k8s监控方案实践补充(二):使用kube-state-metrics获取资源状态指标

k8s监控方案实践补充(二):使用kube-state-metrics获取资源状态指标


随着容器化和微服务架构的不断发展,系统的复杂性与日俱增,构建一套完善的监控与资源管理体系已成为保障系统稳定运行的关键。在前几篇文章中,我们已经介绍了如何部署 Prometheus、Node Exporter、Grafana 以及 Alertmanager,并通过钉钉 Webhook 实现了监控告警的闭环。

在本篇补充文章中,我们将部署 Kubernetes 官方提供的资源对象状态采集组件 —— kube-state-metrics。它通过访问 API Server,实时导出 Pod、Deployment、StatefulSet、PVC 等 Kubernetes 对象的详细状态指标,为 Prometheus 提供更丰富的监控数据支持,帮助我们全面掌握集群运行状态、资源对象的变化情况,并为告警配置和可视化展示打下基础。

一、Metrics Server简介

kube-state-metrics 是 Kubernetes 官方维护的 Exporter,专门用于收集集群中各类资源对象的状态信息(如 Deployment 副本状态、Pod 准备情况、PVC 是否绑定等),并以 Prometheus 支持的格式对外暴露。
它与 Metrics Server 的区别在于:

项目kube-state-metricsMetrics Server
指标类型对象状态指标资源使用率指标
示例指标Deployment 副本数、Pod 状态、PVC 状态等Pod/Node 的 CPU、内存使用率
数据持久化否(需 Prometheus 拉取)
适用场景状态监控、结构化分析、告警配置实时资源监控、HPA 自动扩缩容

Metrics Server 不同,kube-state-metrics 不提供节点或 Pod 的实时资源使用数据(如 CPU、内存),而是专注于资源对象的状态变更,例如:

  • 某个 Pod 是否处于 Ready 状态
  • Deployment 的实际副本数是否满足期望
  • PVC 是否成功绑定
  • Node 是否处于 NotReady 状态

部署 kube-state-metrics 后,能够实现以下功能:

  • 为 Prometheus 提供更丰富的集群状态指标来源
  • 辅助构建针对 K8s 对象状态的 Grafana 可视化面板
  • 支持告警规则配置,如 “某 Deployment 副本不足” 或 “某 Node 不可用”

⚠️ 需要注意的是,kube-state-metrics 只是将数据导出为指标,它本身不存储数据,需要配合 Prometheus 进行拉取、存储和查询。

g.cn/direct/31da7451a2e34431b7ce7606e6722ebf.png)

二、kube-state-metrics实战部署

1. 创建RBAC(kube-state-metrics-rbac.yaml)

为 kube-state-metrics 配置必要的权限,允许其访问集群中资源对象的状态信息

---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: kube-state-metrics
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: kube-state-metrics
rules:
- apiGroups: [""]
  resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints", "secrets"]
  verbs: ["list", "watch"]
- apiGroups: ["extensions"]
  resources: ["daemonsets", "deployments", "replicasets"]
  verbs: ["list", "watch"]
- apiGroups: ["apps"]
  resources: ["statefulsets"]
  verbs: ["list", "watch"]
- apiGroups: ["batch"]
  resources: ["cronjobs", "jobs"]
  verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
  resources: ["horizontalpodautoscalers"]
  verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: kube-state-metrics
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: kube-state-metrics
subjects:
- kind: ServiceAccount
  name: kube-state-metrics
  namespace: kube-system

2. 创建Service(kube-state-metrics-svc.yaml)

暴露 kube-state-metrics 服务端口,并添加 Prometheus 自动抓取注解

apiVersion: v1
kind: Service
metadata:
  annotations:
    prometheus.io/scrape: 'true'  # 开启 Prometheus 抓取
  name: kube-state-metrics
  namespace: kube-system
  labels:
    app: kube-state-metrics
spec:
  ports:
  - name: kube-state-metrics
    port: 8080
    protocol: TCP
  selector:
    app: kube-state-metrics

3. 创建Deployment(kube-state-metrics-deploy.yaml)

部署 kube-state-metrics,使用前面创建的 ServiceAccount

apiVersion: apps/v1
kind: Deployment
metadata:
  name: kube-state-metrics
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kube-state-metrics
  template:
    metadata:
      labels:
        app: kube-state-metrics
    spec:
      serviceAccountName: kube-state-metrics
      containers:
      - name: kube-state-metrics
        image: harbor.local/k8s/kube-state-metrics:2.7.0
        ports:
        - containerPort: 8080

4. 部署所有资源

kubectl apply -f kube-state-metrics-rbac.yaml
kubectl apply -f kube-state-metrics-svc.yaml
kubectl apply -f kube-state-metrics-deploy.yaml

总结

🚀 本篇文章补充了 Kubernetes 集群监控的重要组成部分 —— kube-state-metrics 的部署与配置。通过该组件,解决了仅依赖 Metrics Server 无法全面反映集群资源状态的问题,增强了 Prometheus 对 Kubernetes 对象(如 Deployment、Pod、Node 等)状态指标的采集能力。
✅ 至此,基于 Metrics Server 和 kube-state-metrics 的 Kubernetes 集群监控方案已基本完善。结合 Prometheus、Alertmanager 和 Grafana,这套监控体系能够帮助运维团队全面掌控集群运行状况,及时响应故障,提升整体运维效率和系统稳定性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值