回溯法



#include<iostream>
#include<fstream>
#include<vector>
using namespace std;
#define MAX 505
#define INF 10000

int cap,N,sp,M;
int vex;
int dist[MAX][MAX];
int bike[MAX];
#define PF cap/2

vector<int> curpath;
vector<int> shortpath;
int minsend=INF,minback=INF;
int minlen=INF;
int cursend=0,curback=0;
int curlen=0;
bool visit[MAX]={0};

void dfs(int cur){
	if(curlen>minlen) 
		return;
	if(cur==sp){
	//到达目标点,看是否最优 
		if(curlen<minlen){
			minlen=curlen;
			minsend=cursend;
			minback=curback;
			shortpath=curpath;
		}
		else if(curlen==minlen){
			if(cursend<minsend||(cursend==minsend&&curback<minback)){
				minsend=cursend;
				minback=curback;	
				shortpath=curpath;
			}	
		}
		return;
	}
	for(int i=1;i<vex;i++){
		if(visit[i]==true||dist[cur][i]==INF)
			continue;
		int lastsend=cursend;
		int lastback=curback;
		//计算到达当前点的send和back数 
		if(bike[i]+curback<PF){
			cursend+=PF-bike[i]-curback;
			curback=0;
		}
		else{
			curback=bike[i]+curback-PF;
		}
		//操作之 
		visit[i]=true;
		curpath.push_back(i);
		curlen+=dist[cur][i];
		dfs(i);
		//取消标记,回溯法 
		curpath.pop_back();
		visit[i]=false;
		curlen-=dist[cur][i];
		cursend=lastsend;
		curback=lastback;
	}
}
int main(){
	cin>>cap>>N>>sp>>M;
	//初始化,距离置为INF 
	vex=N+1;
	for(int i=0;i<vex;i++){
		for(int j=0;j<vex;j++){
			dist[i][j]=dist[j][i]=INF;
		}
	}

	for(int i=1;i<vex;i++){
		cin>>bike[i];
	}
	for(int k=0;k<M;k++){
		int i,j;
		cin>>i>>j;
		cin>>dist[i][j];
		dist[j][i]=dist[i][j];
	}
	
	dfs(0);
	
	printf("%d 0",minsend);	
	for(int i=0;i<shortpath.size();i++){
		printf("->%d",shortpath[i]);
	}
	printf(" %d",minback);
	return 0;
}


内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值