Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
For example:
Given array A = [2,3,1,1,4]
The minimum number of jumps to reach the last index is 2
. (Jump 1
step from index 0 to 1, then 3
steps to the last index.)
解析:最少跳数,简单解法递归,跳数需传参记录,找到最小值。注意返回时跳数要回溯。递归复杂度较高,实质为穷举。
题目类型较为常见,动态规划思路很容易想出。数组nums记录题目中的array。再使用一个数组stepNum记录每个位置最少需要的跳数。关键在于找出stepNum前后的关联。在某个位置可以得出从此位置可到达的最远位置,并使用max进行记录。当下个位置的 i+nums[i] > max 时,说明从max到 i+nums[i] 这段距离中的位置的跳数需要在当前位置的最少跳数上加一。考虑下初始条件,stepNum[0] = 0 即可,因为第一个位置无需跳数。接下来考虑边界问题,包括无法跳到和跳跃时越界的情况,可以统一处理即可。
以下给出AC的JAVA代码
// 45h
public int jump(int[] nums) {
int k = nums.length;
if (k <= 1) {
return 0;
}
int step, max = 0;
int stepNum[] = new int[k];
for (int i = 0; i < k; i++) {
step = nums[i];
if (i + step >= k - 1) {
return stepNum[i] + 1;
}
if (i + step > max) {
for (int j = max + 1; j <= i + step; j++) {
stepNum[j] = stepNum[i] + 1;
}
max = i + step;
}
if (step == 0 && max == i) {
return 0;
}
}
return 0;
}