flink kafka自定义反序列化

本文介绍了在Flink进行Kafka实时流计算时,如何处理不同topic的数据。由于Flink的标准反序列化方案可能无法满足特定需求,因此作者提出通过自定义实现KeyedDeserializationSchema接口来获取并处理topic信息。示例代码展示了如何利用该接口获取messageKey、message、topic、partition和offset等信息。
摘要由CSDN通过智能技术生成

       flink kafka实时流计算时,通常会有将多个topic数据接入计算,而这时通常需要区分消息属于哪个topic进行针对处理。spark默认就将topic信息同kafka 消息一起提供出来了,flink 提供的SimpleStringSchema反序列化默认只将消息输出,topic信息没有,JSONKeyValueDeserializationSchema类提供了topic消息,要求消息体为json。 当这些不能满足时,flink也提供了序列化和反序列化接口KeyedDeserializationSchema和KeyedSerializationSchema,可以自定义实现。我们一般都是从kafka消费消息自定义实现KeyedDeserializationSchema接口就可以了。

   直接上代码:

public class KafkaDeserializationTopicSchema implements KeyedDeserializationSchema<Tuple3<String,String,String>> {


    public KafkaDeserializationTopicSchema(){

    }
    @Override
    public Tuple3 deserialize(byte[] keyByte, byte[] message, String topic, int partition, long offset) throws IOException {
        String key = null;
        String value = null;
        if (keyByte != null) {
            key = new String(keyByte, StandardCharsets.UTF_8);
        }
        if (message != null) {
     
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值