2012java蓝桥杯本科选拔赛

本文通过一系列数学和编程挑战,包括黄金分割在数列中的体现、海盗饮酒问题、汉诺塔的移动次数计算、低碳生活大奖赛的计分规则、寻找字符串中首个数字、割圆法求圆周率、最大值快速查找、处理矩形关系、智力训练中数字组合和泊松分酒问题,展示了数学和编程思维在解决实际问题中的应用。
摘要由CSDN通过智能技术生成

1.黄金分割数0.618与美学有重要的关系。舞台上报幕员所站的位置大约就是舞台宽度的0.618处,墙上的画像一般也挂在房间高度的0.618处,甚至股票的波动据说也能找到0.618的影子...

    黄金分割数是个无理数,也就是无法表示为两个整数的比值。0.618只是它的近似值,其真值可以通过对5开方减去1再除以2来获得,我们取它的一个较精确的近似值:0.618034

    有趣的是,一些简单的数列中也会包含这个无理数,这很令数学家震惊!

    1 3 4 7 11 18 29 47 .... 称为“鲁卡斯队列”。它后面的每一个项都是前边两项的和。

    如果观察前后两项的比值,即:1/3,3/4,4/7,7/11,11/18 ... 会发现它越来越接近于黄金分割数!

    你的任务就是计算出从哪一项开始,这个比值四舍五入后已经达到了与0.618034一致的精度。

请写出该比值。格式是:分子/分母。比如:29/47

package LanQiaoBei;

import java.text.DecimalFormat;

public class Java2012_1 {

	public static void main(String[] args) {
		double x = 1;
		double y = 3;
		double x1 = x;
		String finalValue = "0.618034";
		double temp = 1/3;
		String result = "";
		DecimalFormat df = new DecimalFormat("0.000000");
		while(!finalValue.equals(result)) {
			x1 = x;
			x = y;
			y += x1; 
			temp = x/y;
			result = df.format(temp);
		}
		System.out.println((int)x + "/" + (int)y);
	}

}

 

2.有一群海盗(不多于20人),在船上比拼酒量。过程如下:打开一瓶酒,所有在场的人平分喝下,有几个人倒下了。再打开一瓶酒平分,又有倒下的,再次重复...... 直到开了第4瓶酒,坐着的已经所剩无几,海盗船长也在其中。当第4瓶酒平分喝下后,大家都倒下了。

    等船长醒来,发现海盗船搁浅了。他在航海日志中写到:“......昨天,我正好喝了一瓶.......奉劝大家,开船不喝酒,喝酒别开船......

    请你根据这些信息,推断开始有多少人,每一轮喝下来还剩多少人。

    如果有多个可能的答案,请列出所有答案,每个答案占一行。

    格式是:人数,人数,...

    例如,有一种可能是:20,5,4,2,0

package LanQiaoBei;

public class Java2012_2 {

	public static void main(String[] args) {
		sovle(20, 0, new int[4]);
	}

	private static void sovle(int cur, int index, int arr[]) {
		if(index== 4) {
			double temp = 0;
			for(int i=1; i<4; i++) {
				if(arr[i]>=arr[i-1]) {
					return;
				}
			}
			for(int i=0; i<4; i++) {
				temp +=  1.0/arr[i];
			}
			if(temp == 1.0) {
				for(int i=0; i<4; i++) {
					System.out.print(arr[i] + " ");
				}
				System.out.println("0");
			}
		} else {
			for(int i=cur; i>=0; i--) {
				arr[index] = i;
				sovle(cur, index+1, arr);
			}
		}
	}

}


 

3.汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。

    大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上(可以借助第三根柱子做缓冲)。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

    如图【1.jpg】是现代“山寨”版的该玩具。64个圆盘太多了,所以减为7个,金刚石和黄金都以木头代替了......但道理是相同的。

    据说完成大梵天的命令需要太多的移动次数,以至被认为完成之时就是世界末日!

    你的任务是精确计算出到底需要移动多少次。

    很明显,如果只有2个圆盘,需要移动3次。

    圆盘数为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值