张量
在编写tensorflow程序时,程序传递和运算的主要目标是张量。
张量的类型
张量的阶
张量的创建
创建随机张量
张量的变换
代码:
#张量的演示 def tensor_demo(): ''' 张量的演示 :return: ''' tensor1 = tf.constant(4.0) tensor2 = tf.constant([1,2,3,4]) linear_squares = tf.constant([[4],[9],[16],[25]],dtype=tf.int32) #0张量 zero = tf.zeros(shape=[3,4]) #1张量 one = tf.ones(shape=[4,3]) #随机张量.mean是均值,stddev是标准差 random= tf.random_normal(shape=[2,3],mean=1.75,stddev=0.2) print("tensor1:\n",tensor1) print("tensor2:\n",tensor2) print("linear_squares:\n",linear_squares) print("zero:\n",zero) print("one:\n",one) print("random:\n",random) #张量类型的修改 #改变张量的数据类型 l_cast = tf.cast(linear_squares,dtype=tf.float32) print("l_cast:\n",l_cast) #改变静态形状(必须用placeholder,占位张量) a_p = tf.placeholder(dtype=tf.float32,shape=[None,None]) b_p = tf.placeholder(dtype=tf.float32,shape=[None,10]) c_h = tf.placeholder(dtype=tf.float32,shape=[3,2]) print("a_p:\n",a_p) print("b_p:\n",b_p) print("c_h:\n", c_h) #静态更新形状未确定的部分,只能更新NONE的地方,并且维数 也是确定的 #a_p.set_shape([3,2]) #b_p.set_shape([2,10]) #动态更新, a_p_reshape = tf.reshape(a_p,shape=[2,3,1]) c_h_reshape = tf.reshape(a_p, shape=[3,3]) print("c_h_reshape:\n", c_h_reshape) print("a_p:\n",a_p) print("a_p_reshape:\n",a_p_reshape) print("b_p:\n",b_p) return None
输出: