反函数
反函数的简介
- 从函数f出发,对于给定实数y,只有当y在f的值域中时,才可能存在f定义域中的x使得f(x)=y,且可能存在多个x满足该等式(如f(x)=x2),也可能只有一个(如g(x)=x3)。
- 理想情况下,对于f值域中的任意y,都只有唯一的x值满足f(x)=y,即不同输入对应不同输出,此时可定义f的反函数f−1。
- 反函数f−1的定义域与f的值域相同,f−1的值域与f的定义域相同,f−1(y)是满足f(x)=y的x,即若f(x)=y,则f−1(y)=x,f−1可恢复f的变换效果。
- 关于如何知道满足f(x)=y的x唯一、如何求反函数、反函数图像以及不满足唯一x时如何处理等问题。
水平检验
- 对于函数f,判断其值域中任意y是否只有一个x值满足f(x)=y,可通过函数图像来判断。若过点(0,y)的水平线与图像仅相交一次(交点为(x,y)),则存在唯一x;若相交多于一次,则存在多个x,此时要获得反函数需限制定义域;若不相交,则y不在值域内。
- 总结出水平线检验:若每条水平线与函数图像相交至多一次,则函数有反函数;若存在一条水平线与图像相交多于一次,则函数没有反函数。
- 举例说明,f(x)=x3的图像中没有水平线与之相交多于一次,所以f有反函数;g(x)=x2的图像有一些水平线与之相交两次,所以g没有反函数,如求解y=x2(y为正)时会出现两个解,无法确定取值 。
解疑
函数的检验是“垂直检验”,而反函数的检验是“水平检验”
求反函数
- 求函数f反函数的一种方法是先记下y=f(x),再尝试解出x,以f(x)=x3为例,由y=x3可解得x=3y,也可改写为f−1(x)=3x,但并非所有函数都能轻易求解x,甚至很多时候求解是不可能的。
- 若已知函数图像,画反函数图像较容易,基本思路是画出y=x这条直线并将其当作双面镜子,反函数图像是原函数关于y=x的镜面反射,以f(x)=x3为例,其反函数f−1图像如此,且f和f−1的定义域和值域均为整个实轴。
限制定义域
- 当函数因对于相同y有多个x值而无法通过水平线检验、没有反函数时,唯一的解决方法是限制定义域,即删去部分曲线,使保留部分能通过水平线检验。
- 以g(x)=x2为例,可删除其左半边图像,将定义域缩减为[0,+∞),得到函数h(x)=x2(定义域为[0,+∞)),该函数有反函数,通过在y=x2中求解x,结合反函数值域与原函数定义域相同(为[0,+∞)),确定反函数为h−1(x)=x。
- 也可删除g(x)=x2的右半边图像,将定义域限制为(−∞,0],得到函数j(x)=x2(定义域为(−∞,0]),其反函数为j−1(x)=−x。
- 若g(x)=x2定义域为(−∞,+∞),不通过水平线检验,将其在y=x中反射会得到相应的图像(文中提及图 1-8 )。
反函数的反函数
- 若函数f有反函数f−1,则对于f定义域中的所有x,f−1(f(x))=x;对于f值域中的所有y,f(f−1(y))=y。以f(x)=x3及其反函数f−1(x)=3x为例,有f−1(f(x))=3x3=x,f(f−1(x))=(3x)3=x,说明反函数具有恢复原始输入的作用,且反函数的反函数是原始函数。
- 对于需要限制定义域的函数,如g(x)=x2,将其定义域限制为[0,+∞)后(此时应看作函数h(x)=x2 ),g−1(x)=x,计算g(g−1(x))=x2=x(x≥0);而g−1(g(x))=x2,当x=−2时,结果不等于x,因为−2不在限制定义域内,即g−1(g(x))=x不成立,原因是x不在限制的定义域中。
- 总结指出若函数f限制定义域后有反函数f−1,则对于f值域中的所有y,f(f−1(y))=y;但f−1(f(x))不一定等于x,仅当x在限制的定义域中时,f−1(f(x))=x成立,后续在 10.2.6 节会继续讨论反三角函数的相关要点。
解疑
如果一个函数f的定义域可以被限制,使得f有反函数f−1,那么 :
・对于f值域中的所有y,都有f(f−1(y))=y;但是
・f−1(f(x))可能不等于x;事实上,f−1(f(x))=x仅当x在限制的定义域中才成立。”
-
对于f值域中的所有y,都有f(f−1(y))=y:(限定了值域)
- 从反函数的定义来看,反函数f−1的作用是将函数f输出的值y(y在f的值域中),通过f−1的运算找到原来的输入x,使得f(x)=y。
- 当我们先对y进行f−1运算得到f−1(y)(这个f−1(y)其实就是原来能通过f得到y的那个x),然后再把f−1(y)代入f中进行运算,即f(f−1(y)),就会又得到y。例如前面f(x)=x3,f−1(x)=3x,对于任意在f值域中的y,f(f−1(y))=f(3y)=(3y)3=y 。这是因为反函数的定义就保证了这个性质,只要y在f的值域中,这个等式就一定成立。
-
f−1(f(x))可能不等于x;事实上,f−1(f(x))=x仅当x在限制的定义域中才成立:(如果不限制定义域的结果)
- 以g(x)=x2为例,当我们把它的定义域限制为[0,+∞)后(为了方便理解和与一般情况区分,这里我们先按应该用h(x)=x2(x∈[0,+∞))来讨论),它的反函数h−1(x)=x。
- 对于h−1(h(x)),当x在限制的定义域[0,+∞)中时,h(x)=x2,h−1(h(x))=h−1(x2)=x2=x(因为x≥0)。
- 但如果我们还是用g(x)(没有严格注意定义域限制),当x不在限制的定义域[0,+∞)中,比如x=−2时,g(x)=(−2)2=4,然后g−1(g(x))=g−1(4)=4=2=−2 ,即g−1(g(x))=x。这是因为我们在求反函数时,是基于限制定义域后的函数来求的,当x不在这个限制定义域内时,函数和反函数之间的这种 “恢复” 关系就不成立了。所以只有当x在限制的定义域中时,f−1(f(x))=x才成立。
总之,当函数限制定义域得到反函数后,f(f−1(y))=y在y属于f值域时恒成立,而f−1(f(x))=x成立是有条件的,即x必须在限制定义域内。在求反函数的反函数中,一定一定要注意定义域和值域的问题,不然很容易出错。
复合函数
函数替换
对于函数g(x)=x2,可将x替换为使函数有意义的对象,替换时拿不准应加小括号,指数函数替换时除外。
函数复合
以f(x)=cos(x2)为例,可将其拆分为g(x)=x2和h(x)=cos(x),f(x)=h(g(x)),计算时先执行g函数再执行h函数;通过g(x)=2x,h(x)=5x4,j(x)=2x−1的例子展示了函数复合的计算过程。
函数分解
以f(x)的一个函数式为例,通过逐步分析其运算步骤,将其分解为g(x)=x+3、h(x)=log2(x)、j(x)=5x、k(x)=tan(x)、m(x)=x1 等简单函数,且函数分解不唯一。
函数乘积与函数复合的区别
函数的复合不是相乘,函数的乘积和复合不同,复合与函数顺序有关,乘积与函数顺序无关。
函数图像平移
函数h(x)=f(x−a)(a为常数)的图像是y=f(x)的图像平移a个单位得到,a为正向右平移,a为负向左平移,如y=(x−5)2是y=x2向右平移5个单位,y=(x+5)3是y=x3向左方平移5个单位。
解疑
数学里的函数复合类似于程序中的函数嵌套调用。主函数调用子函数这种类型。
函数图像平移+号是向左平移,-号是向右平移。而坐标轴中数值+号是向右递增 -号是向左递减。