Hadoop学习1

Hadoop学习1

Hadoop

Hadoop是什么

  1. Hadoop是一个由Apache基金会所开发的分布式系统基础架构
  2. 主要解决海量数据的存储和海量数据的分析计算问题
  3. 广义上来说,Hadoop通常是指一个更广泛的概念-------Hadoop生态圈

Hadoop发展历史

  1. Lucene框架是Doug Cutting开创的开源软件,用Java书写代码,实现与Google类似的全文检索功能,他提供了全文检索引擎的架构,包括完整的查询引擎和索引引擎
  2. 2001年年底Lucene成为Apache基金会的一个子项目
  3. 对于海量数据的场景,Lucene面对与Google同样的困难,存储数据困难,检索速度慢
  4. 学习和模仿Google解决这些问题的办法:微型版Nutch
  5. 可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文GFS—>HDFS Map-Reduce—>MR BigTable---->HBase)
  6. 2003-2004年,Google公开了部分GFS和MapReduce思想细节,以此为基础Doug Cutting等人用了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升
  7. 2005年Hadoop作为Lucene的子项目Nutch的一部分正式引入Apache基金会
  8. 2006年3月份,Map-Reduce和Nutch Distributed File System(NDFS)分别被纳入称为Hadoop的项目中
  9. 名字来源于Doug Cutting儿子的玩具大象

Hadoop三大发行版本

Hadoop三大发行版本:ApacheClouderaHortonworks
Apache版本最原始,对于入门学习最好
Cloudera在大型互联网企业中用的较多。
Hortonworks文档较好

Hadoop优势

  1. 高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失
  2. 高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点
  3. 高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度
  4. 高容错性:能够自动将失败的任务重新分配

Hadoop1.x和2.x的区别

在这里插入图片描述

Hadoop组成

HDFS架构概述

  1. NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
  2. DataNode(dn):在本文件系统存储文件块数据,以及块数据的校验和
  3. Secondary NameNode(2nn):用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照

YARN架构概述

在这里插入图片描述

MapReduce架构概述

MapReduce将计算过程分为两个阶段:Map和Reduce,如图所示

  1. Map阶段并行处理输入数据
  2. Reduce阶段对Map结果进行汇总
    在这里插入图片描述

大数据技术生态体系

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值