SSM整合(1)

本文详细介绍了SSM(Spring、SpringMVC、MyBatis)整合的配置过程,包括web.xml、applicationContext-dao、service、trans等配置文件的设置,以及jdbc.properties、springmvc.xml、SqlMapConfig.xml等核心配置的解析。同时,提供了项目包结构和所需jar包的下载链接。

一、web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/javaee 
    http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
    <welcome-file-list>
        <welcome-file>customer.action</welcome-file>
    </welcome-file-list>
    <!-- 上下文的位置 -->
    <context-param>
        <param-name>contextConfigLocation</param-name>
        <param-value>classpath:applicationContext-*.xml</param-value>
    </context-param>
    <!-- Spring的监听器 -->
    <listener>
        <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
    </listener>

    <!-- POST提交过滤器 UTF-8 -->
    <filter>
        <filter-name>encoding</filter-name>
        <filter-class>org.springframework.web.filter.CharacterEncodingFilter</filter-class>
        <init-param>
            <param-name>encoding</param-name>
            <param-value>UTF-8</param-value>
        </init-param>
    </filter>

    <filter-mapping>
        <filter-name>encoding</filter-name>
        <url-pattern>*.action</url-pattern>
    </filter-mapping>
    <!-- 前端控制器 -->
    <servlet>
        <servlet-name>crm</servlet-name>
        <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
        <init-param>
            <param-name>contextConfigLocation</param-name>
            <!-- 此处不配置 默认找 /WEB-INF/[servlet-name]-servlet.xml -->
            <param-value>classpath:springmvc.xml</param-value>
        </init-param>
        <load-on-startup>1</load-on-startup>
    </servlet>
    
MATLAB代码实现了一个基于多种智能优化算法优化RBF神经网络的回归预测模型,其核心是通过智能优化算法自动寻找最优的RBF扩展参数(spread),以提升预测精度。 1.主要功能 多算法优化RBF网络:使用多种智能优化算法优化RBF神经网络的核心参数spread。 回归预测:对输入特征进行回归预测,适用于连续值输出问题。 性能对比:对比不同优化算法在训练集和测试集上的预测性能,绘制适应度曲线、预测对比图、误差指标柱状图等。 2.算法步骤 数据准备:导入数据,随机打乱,划分训练集和测试集(默认7:3)。 数据归一化:使用mapminmax将输入和输出归一化到[0,1]区间。 标准RBF建模:使用固定spread=100建立基准RBF模型。 智能优化循环: 调用优化算法(从指定文件夹中读取算法文件)优化spread参数。 使用优化后的spread重新训练RBF网络。 评估预测结果,保存性能指标。 结果可视化: 绘制适应度曲线、训练集/测试集预测对比图。 绘制误差指标(MAE、RMSE、MAPE、MBE)柱状图。 十种智能优化算法分别是: GWO:灰狼算法 HBA:蜜獾算法 IAO:改进天鹰优化算法,改进①:Tent混沌映射种群初始化,改进②:自适应权重 MFO:飞蛾扑火算法 MPA:海洋捕食者算法 NGO:北方苍鹰算法 OOA:鱼鹰优化算法 RTH:红尾鹰算法 WOA:鲸鱼算法 ZOA:斑马算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值