Python OpenCV调整图像亮度对比度及RGB色彩

本文详细介绍了如何使用Python的OpenCV库调整图像的亮度、对比度,并分离和调整RGB颜色通道。步骤包括读取图像、调整参数、分离通道、独立调整各通道值并最终合并输出。
摘要由CSDN通过智能技术生成

python通过opencv库调整图像的步骤:

1. 读取图像

直接通过cv2库读取图像,可以读取jpg, png等格式

import cv2
import numpy as np

image = cv2.imread('C:\\D\\temp\\205250_last.png')

2. 调整图像亮度及对比度

OpenCV提供 convertScaleAbs 函数来调整对比度和亮度,可以直接调用该函数

如果只调整RGB颜色通道,则可以忽略此步骤

# 定义alpha和beta
alpha = 1.05  # 对比度控制 为了降低对比度,请使用0<alpha<1。对于更高的对比度,请使用alpha>1。
beta = -39  # 亮度控制 亮度值的良好范围为[-127,127]

# 调用convertScaleAbs函数
adjusted = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)

3. 分离出图片的B,R,G颜色通道

使用split函数实现颜色通道分离

B, G, R = cv2.split(adjusted)  # 分离出图片的B,R,G颜色通道

4. 分别调整R, G, B通道的值

根据图像宽高,设置对应的R, G, B调整值,完成矩阵计算

red_factor = np.full(image.shape[:2], 20, dtype="uint8")  # 创建与image相同大小的矩阵
R_temp = R + red_factor

green_factor = np.full(image.shape[:2], -1, dtype="uint8")  # 创建与image相同大小的矩阵
G_temp = G + green_factor

blue_factor = np.full(image.shape[:2], -39, dtype="uint8")  # 创建与image相同大小的矩阵
B_temp = B + blue_factor

5. 合成图像

使用merge函数

output = cv2.merge([B_temp, G_temp, R_temp])

6. 显示图像

cv2.imshow('adjusted', output)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值