一个数组有2n个元素,其中有n个奇数、n个偶数,数组无序,写一个算法使得奇数位置放置奇数,偶数位置放置偶数

一个数组有2n个元素,其中有n个奇数,n个偶数,数组无序,写一个算法使得奇数位置放置奇数,偶数位置放置偶数。例如

int array[20]={1,2,1,2,1,1,1,2,2,2,2,1,1,2,2,2,2,2,2,2};

最终结果

a={1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2};

问题分析:遍历一次整个数组,先判断是奇数位还是偶数为,并检查数组中的元素(奇数或偶数)和奇偶位置是否对应(奇数位对应奇数,偶数为对应偶数);如果奇数位置中存放的元素不是奇数,需要调整;这时候我们需要从当前下标的下一个去遍历后面的数组元素找到第一奇数(在遍历过程中会有奇数位存放的奇数的情况, 我们直接不动已经符合题目要求的元素,继续往后遍历),然后进行替换;具体代码实现如下:

void sort(int * array ,int length){
    for(int i = 0 ;i < length ; i++){
        int j = i+1;
        if((i & 0x01) == 0){//奇数位置
            if((array[i] & 0x01 )== 0){//不是奇数
                while(j < length){
                    // 奇数位置放置的是奇数,继续往后遍历
                    
### 回答1: 这个结论是正确的。具体来说,对于任意一个自然数n,它的立方可以表示为n个连续奇数之和,即: n^3 = 1 + 3 + 5 + ... + (2n-1) 这个式子可以通过数学归纳法来证明。当n=1时,显然有1^3=1,也就是1个连续奇数之和。假设当n=k时上述式子成立,即k^3 = 1 + 3 + 5 + ... + (2k-1)。那么当n=k+1时,我们可以将k^3展开,得到: k^3 = 1 + 3 + 5 + ... + (2k-1) 将每个数乘以2,再加上2k+1,得到: 2k^3 + 6k^2 + 6k + 1 = (2k+1) + (2k+3) + ... + (2k+2k+1) 也就是: (k+1)^3 = 1 + 3 + 5 + ... + (2k+1) 因此,对于任意一个自然数n,它的立方都等于n个连续奇数之和。 ### 回答2: 这个结论可以用数学归纳法来证明。 首先,当n=1时,1的立方等于1个连续奇数1,结果显然成立。 假设对于任何k∈N,k的立方都等于k个连续奇数之和,即1^3+3^3+...+(2k-1)^3=k^3,成立。 现在来证明对于k+1也成立,即(1+3+...+(2k-1)+(2k+1))的立方等于k+1个连续奇数之和。 首先,我们可以把(1+3+...+(2k-1))看作1~(2k-1)中所有奇数之和,即(2k-1)^2=k^2+(2k-1)。因此,(1+3+...+(2k-1)+(2k+1))=k^2+(2k-1)+(2k+1)=k^2+2k,而(k+1)^3=k^3+3k^2+3k+1。 因此,我们可以得到(k+1)^3=(1^3+3^3+...+(2k-1)^3)+(2k+1)^3,即(k+1)^3等于k个连续奇数之和加上一个奇数的立方。这就证明了任何一个自然数n的立方都等于n个连续奇数之和。 ### 回答3: 对于任何一个自然数n,它的一半是n/2。从1开始,连续的n个奇数相加,等同于1+3+5+7+...+(n-2)+(n-4)+(n-6)+(n-8)+...+(3)+(1)。 这个序列可以分成两个部分: 1. 前面的一半奇数序列(1到n-1),等同于1+3+5+7+...+(n-2); 2. 后面的一半奇数序列(n-1到1),等同于(n-4)+(n-6)+(n-8)+...+3+1。 两部分相加,每个数恰好出现一次,总和为n*n。 因此,任何一个自然数n的立方都等于n个连续奇数之和,即n^3=1+3+5+...+(2n-3)+(2n-1)。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值