自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 C++利用Eigen生成任意规模稀疏矩阵

之前记录了生成一个给定规模和固定数据的稀疏矩阵,这里我们生成一个任意规模和任意稀疏度的矩阵。定义函数这里稀疏矩阵仍旧采取了三元组的存储方式,函数中有三个输入参数,即稀疏矩阵行列和稀疏度批注:这里随机生成非零位置未排除重复位置,可能事实稀疏度会略低于给定的稀疏度。#include "iostream"#include "Eigen/SparseCore"#include "time.h"using namespace std;using namespace Eigen;Spa..

2021-08-23 17:37:28 1487

原创 Eigen构造稀疏矩阵

Eigen构造稀疏矩阵,这里我们对稀疏矩阵采用三元组的存储方式,即用(i,j,value(i,j))这样的组合把非零元的位置和值表示出来。废话不多说,我们直接上例子#include "iostream"#include "Eigen/SparseCore"using namespace std;using namespace Eigen;int main()//我们需要生成的矩阵/**************** 0 1 0 0 0 0 0 0 2 0 1 0 0 0 0 0

2021-08-18 11:46:16 2171

原创 本地pc与服务器docker环境之间互传文件

本地pc与服务器docker环境之间互传文件本地-》服务器传文件: scp -P portxxx_file [服务器账号]:[文件存储位置]本地-》服务器传文件夹:scp -r -P port xxx_path[服务器账号]:[文件存储位置]服务器传文件-》本地: scp -P port[服务器账号]:[文件存储位置]/soft/xxx_file xxx_file服务器传文件夹-》本地:scp -r -P [服务器账号]:[文件存储位置]/xxx_path xxx_path...

2021-08-13 10:59:14 383

原创 MKl配置环境变量

在编译MKl库的时候出现下下面错误error while loading shared libraries: libmkl_intel_lp64.so: cannot open shared object file: No such file or directoryerror while loading shared libraries: libiomp5.so: cannot open shared object file: No such file or directory处理办法很简

2021-08-13 10:51:09 2132

转载 关于MKL库的多线程设置

对于多核程序,多线程对于程序的性能至关重要。 下面,我们将对Intel MKL 有关多线程方面的设置做一些介绍:我们提到MKL 支持多线程,它包括的两个概念:1>MKL 是线程安全的: MKL在设计时,就保证它是一个线程安全的库函数。 也就是说,无论是在单个线程中调用MKL函数,还是在多个线程中同时使用Intel MKL 函数,都能够确保函数有正确的计算结果。2>MKL函数内部实现了多线程优化。许多MKL的函数,已经包括内部多线程的实现。用户调这些函数时,只需设置多线程的数目,MKL

2021-08-09 17:18:18 4346

原创 Eigen关于稀疏矩阵

处理和解决稀疏问题涉及各种模块,总结如下: 模块 头文件 内容 SparseCore #include <Eigen/SparseCore> SparseMatrix 和 SparseVector 类、矩阵组装、 基本稀疏线性代数(包括稀疏三角求解器) SparseCholesky #include <Eigen/Spars

2021-08-09 10:55:07 4065

原创 Eigen稀疏线性求解

在 Eigen 中,当系数矩阵稀疏时,有多种方法可用于求解线性系统。 由于此类矩阵的特殊表示,应特别注意以获得良好的性能。 有关 Eigen 中稀疏矩阵的详细介绍,请参阅稀疏矩阵操作。 此页面列出了 Eigen 中可用的稀疏求解器。 还介绍了所有这些线性求解器共有的主要步骤。 根据矩阵的属性、所需的精度,最终用户能够调整这些步骤以提高其代码的性能。 请注意,不需要深入了解这些步骤背后隐藏的内容:最后一部分介绍了一个基准程序,可以轻松地使用它来深入了解所有可用求解器的性能。稀疏求解器列表直接求解..

2021-08-04 14:37:45 1575 1

原创 Eigen关于矩阵的介绍

密集矩阵和数组操作矩阵类为了阅读方便大多翻译自下面官方文档。参考:http://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html在Eigen 中,所有矩阵和向量都是Matrix模板类的对象。向量只是矩阵的一种特殊情况,向量是 1 行或 1 列的矩阵。Matrix的前三个模板参数Matrix事实上包括六个参数,我们只需要掌握前三个就可。前三个参数分别是:Matrix<typename Scalar,

2021-07-16 16:18:48 1123

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除