安装CUDA
1.准备工作:(ps:这一点非常重要,因为在nvidia官网下载cuda时需要知道你的ubuntu最起码配置)
查看显卡驱动:
nvidia-smi
查看ubuntu版本:
sudo lsb_release -a
2.找到显卡驱动对应的cuda:
3. 找到tensorflow-gpu对应的cuda和cuDNN版本
4.去官网下载cuda安装包:https://developer.nvidia.com
5.安装cuda:cd 到安装包目录下,执行命令
sudo sh cuda_9.0.176_384.81_linux.run
注意在安装cuda的时候不要安装驱动(因为已经安装好了!)
6.配置环境变量:(根据自己实际情况来配置,找到路径即可)
vim ~/.bashrc
在环境变量最后添加以下两句:
export PATH=$PATH:/usr/local/cuda-10.1/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.1/lib64
7.查看安装cuda版本:
nvcc –version
CUDA安装完成!!!
安装cuDNN
cuDNN是nvidia的专用于机器学习加速包,详情就不解释了
1.找到CUDA对应版本cuDNN(见上表),在英伟达官网下载cuDNN文件(以tgz结尾的压缩包),直接解压即可。
https://developer.nvidia.com/rdp/cudnn-archive
2.解压压缩包得到cuda文件夹,里面有两个子文件夹,需要做的就是把这些文件夹里面的文件拷贝到cuda安装目录即可。
sudo cp cuda/include/cudnn.h /usr/local/cuda-9.0/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64/
就是两个简单的复制命令,/usr/local/cuda-9.0 是cuda默认安装路径。移动完如果有图像界面或者FileZilla最好去目录里面查看一下,确保文件移动过去了。
sudo chmod a+r /usr/local/cuda-9.0/include/cudnn.h
sudo chmod a+r /usr/local/cuda-9.0/lib64/libcudnn*
这两个我也不知道干嘛的~~
OK,cuDNN安装完成,查看cudnn是否安装正确,只需要输入命令:
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
这样便是没有问题了。
安装Tensorflow-gpu
同样,找到对应版本tensorflow-gpu版本即可。激活anaconda环境:
# 从清华镜像下载tensorflow-gpu,
pip install tensorflow-gpu==1.10 -i https://pypi.tuna.tsinghua.edu.cn/simple
安装tensorflow-gpu即可在gpu上面跑代码了。
PS:
按理说安装完成,但还会出现一些问题。
ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory
找了几篇博客,好像是tensorflow与cuda不匹配的缘故,可以试着重新安装tensorflow。如果不行……
步骤1:
#修改环境变量
sudo vim ~/.bashrc
在最后加上这几句话(没错,和之前一样)
export PATH=/usr/local/cuda/binKaTeX parse error: Expected '}', got 'EOF' at end of input: {PATH:+:{PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64KaTeX parse error: Expected '}', got 'EOF' at end of input: …LIBRARY_PATH:+:{LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda
#让环境变量生效
source ~/.bashrc
发现此时import tensorflow还是报一样的错误,所以进行步骤2
步骤2:
检查 /usr/local/cuda-9.0/lib64 下是否有 libcublas.so.9.0
如果有,终端输入:
sudo ldconfig /usr/local/cuda-9.0/lib64
解决。