一、寻找数组的中心索引
给定一个整数类型的数组 nums
,请编写一个能够返回数组“中心索引”的方法。
我们是这样定义数组中心索引的:数组中心索引的左侧所有元素相加的和等于右侧所有元素相加的和。
如果数组不存在中心索引,那么我们应该返回 -1。如果数组有多个中心索引,那么我们应该返回最靠近左边的那一个。
示例 1:
输入:
nums = [1, 7, 3, 6, 5, 6]
输出: 3
解释:
索引3 (nums[3] = 6) 的左侧数之和(1 + 7 + 3 = 11),与右侧数之和(5 + 6 = 11)相等。
同时, 3 也是第一个符合要求的中心索引。
示例 2:
输入:
nums = [1, 2, 3]
输出: -1
解释:
数组中不存在满足此条件的中心索引。
说明:
nums
的长度范围为[0, 10000]
。- 任何一个
nums[i]
将会是一个范围在[-1000, 1000]
的整数。
class Solution {
public:
int pivotIndex(vector<int>& nums) {
if(nums.size()==0)//若size==0则nums容器中无数字,也无中心索引返回-1
{
return -1;
}
int sum=0,leftsum=0;
for(int i=0;i<nums.size();i++)//求数组的总和
{
sum+=nums[i];
}
for(int i=0;i<nums.size();i++)//再次循环,开始计算左侧和
{
if(leftsum==sum-leftsum-nums[i])//如果当前位置的左侧和 == 右侧和(总和-左侧和-当前位置元素)
{
return i;//返回当前位置,即为中心索引
}
leftsum+=nums[i];//若不等,则左侧和继续累加
}
return -1;//找不到则返回-1
}
};
二、至少是其他数字两倍的最大数
在一个给定的数组nums
中,总是存在一个最大元素 。
查找数组中的最大元素是否至少是数组中每个其他数字的两倍。
如果是,则返回最大元素的索引,否则返回-1。
示例 1:
输入: nums = [3, 6, 1, 0]
输出: 1
解释: 6是最大的整数, 对于数组中的其他整数,
6大于数组中其他元素的两倍。6的索引是1, 所以我们返回1.
示例 2:
输入: nums = [1, 2, 3, 4]
输出: -1
解释: 4没有超过3的两倍大, 所以我们返回 -1.
提示:
nums
的长度范围在[1, 50]
.- 每个
nums[i]
的整数范围在[0, 99]
.
class Solution {
public:
int dominantIndex(vector<int>& nums) {
if(nums.size()==0)//容器nums大小为0,返回-1
{
return -1;
}
int max=0,second=0,index=0;//定义最大数、第二大数、和当前位置
for(int i=0;i<nums.size();i++)
{
if(nums[i]>max)//当前元素>max,交换最大数、第二大数,记录当前max所在位置
{
second=max;
max=nums[i];
index=i;
}
else if(nums[i]>second)//当前元素>第二大数&&<最大数,交换第二大数
{
second=nums[i];
}
}
return max>=(second*2)?index:-1;//如果max >= 第二大数的2倍 则满足,返回当前最大元素max下标,否则返回0
}
};
三、加一
给定一个由整数组成的非空数组所表示的非负整数,在该数的基础上加一。
最高位数字存放在数组的首位, 数组中每个元素只存储一个数字。
你可以假设除了整数 0 之外,这个整数不会以零开头。
示例 1:
输入: [1,2,3] 输出: [1,2,4] 解释: 输入数组表示数字 123。
示例 2:
输入: [4,3,2,1] 输出: [4,3,2,2] 解释: 输入数组表示数字 4321。
思路:需要考虑9,9,9这种特殊情况,即需要考虑进位问题,如果连续进位,最高位需要添加1
输入: [9,9,9] 输出: [1,0,0,0] 解释: 输入数组表示数字 999。
解法一:利用迭代器
class Solution {
public:
vector<int> plusOne(vector<int>& digits) {
vector<int>::iterator iter;
for(iter=digits.end()-1;iter>=digits.begin();--iter)
{
if(*iter<9)
{
*iter+=1;
return digits;
}
*iter=0;
}
digits.insert(digits.begin(),1);
return digits;
}
};
解法二:
class Solution {
public:
vector<int> plusOne(vector<int>& digits) {
int n =digits.size();
for(int i=n-1;i>=0;i--)
{
if(digits[i]<9)
{
digits[i]++;
return digits;
}
digits[i]=0;
}
digits.insert(digits.begin(),1);
return digits;
}
};