leetcode 53 : 最大子序和

题目

算法思想 :这道题有三种解法

(1) 遍历所有的连续子数组,求出最大值,这个时间复杂度太高

  (2) 利用动态规划的思想,首先我们要知道,如果当前连续子数组的和sum[i-j](表示i到j) + nums[j+1]比nums[j+1]小,说明我们需要重新开始计算区间,同时与最大的子数组的和进行比较,公式表示为

        result = max(result + nums[i],nums[i]);
        Max = max(result,Max);

  int maxSubArray(vector<int>& nums) {
    const int INF = 1 << 31;
    int result = 0,Max = -INF;
    for(int i = 0;i < nums.size();i++) 
    {
        result = max(result + nums[i],nums[i]);
        Max = max(result,Max);
    }
    return Max;
}

 

(3)分治法,分治法的思想是把问题分成小问题再把它们合并起来。这道题目是把数组分割成最小元素然后再合并成完整数组。合并的时候我们需要考虑的是最大和应该如何取呢?

   假设数组分成了两部分nums[i-mid]和nums[mid+1 - j],那么最大和肯定是要么来自左边的数组,要么来自右边的数组,或从中间向两边扩展,好了,我们知道情况以后就可以写出分治的代码了。

 

int merge(vector<int>& nums,int l,int r)
{
    if(l == r)
        return nums[l];
    int mid = (l+r)/2;
    int lmax = merge(nums,l,mid);
    int rmax = merge(nums,mid+1,r);
    int midmax = nums[mid];
    int tmp = midmax,sum = 0;

// 从中间向两边扩展
    for(int i = mid;i >= l;i--)
    {
        sum += nums[i];
        tmp = max(tmp,sum);
    }
    sum = tmp;
    for(int i = mid+1;i <= r;i++)
    {
        sum += nums[i];
        tmp = max(tmp,sum);
    }

//找出三种情况中最大的和
    return max(lmax,max(rmax,tmp));
    
}

int maxSubArray(vector<int>& nums) {
    return merge(nums,0,nums.size()-1); 
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值