题目
算法思想 :这道题有三种解法
(1) 遍历所有的连续子数组,求出最大值,这个时间复杂度太高
(2) 利用动态规划的思想,首先我们要知道,如果当前连续子数组的和sum[i-j](表示i到j) + nums[j+1]比nums[j+1]小,说明我们需要重新开始计算区间,同时与最大的子数组的和进行比较,公式表示为
result = max(result + nums[i],nums[i]);
Max = max(result,Max);
int maxSubArray(vector<int>& nums) {
const int INF = 1 << 31;
int result = 0,Max = -INF;
for(int i = 0;i < nums.size();i++)
{
result = max(result + nums[i],nums[i]);
Max = max(result,Max);
}
return Max;
}
(3)分治法,分治法的思想是把问题分成小问题再把它们合并起来。这道题目是把数组分割成最小元素然后再合并成完整数组。合并的时候我们需要考虑的是最大和应该如何取呢?
假设数组分成了两部分nums[i-mid]和nums[mid+1 - j],那么最大和肯定是要么来自左边的数组,要么来自右边的数组,或从中间向两边扩展,好了,我们知道情况以后就可以写出分治的代码了。
int merge(vector<int>& nums,int l,int r)
{
if(l == r)
return nums[l];
int mid = (l+r)/2;
int lmax = merge(nums,l,mid);
int rmax = merge(nums,mid+1,r);
int midmax = nums[mid];
int tmp = midmax,sum = 0;
// 从中间向两边扩展
for(int i = mid;i >= l;i--)
{
sum += nums[i];
tmp = max(tmp,sum);
}
sum = tmp;
for(int i = mid+1;i <= r;i++)
{
sum += nums[i];
tmp = max(tmp,sum);
}
//找出三种情况中最大的和
return max(lmax,max(rmax,tmp));
}
int maxSubArray(vector<int>& nums) {
return merge(nums,0,nums.size()-1);
}