Day 20 最大二叉树、合并二叉树、二叉搜索树中的搜索、验证二叉搜索树
力扣相关例题
654. 最大二叉树
给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建:
创建一个根节点,其值为 nums 中的最大值。
递归地在最大值 左边 的 子数组前缀上 构建左子树。
递归地在最大值 右边 的 子数组后缀上 构建右子树。
返回 nums 构建的 最大二叉树 。
示例 :
输入:nums = [3,2,1,6,0,5]
输出:[6,3,5,null,2,0,null,null,1]
解释:递归调用如下所示:
- [3,2,1,6,0,5] 中的最大值是 6 ,左边部分是 [3,2,1] ,右边部分是 [0,5] 。
- [3,2,1] 中的最大值是 3 ,左边部分是 [] ,右边部分是 [2,1] 。
- 空数组,无子节点。
- [2,1] 中的最大值是 2 ,左边部分是 [] ,右边部分是 [1] 。
- 空数组,无子节点。
- 只有一个元素,所以子节点是一个值为 1 的节点。
- [0,5] 中的最大值是 5 ,左边部分是 [0] ,右边部分是 [] 。
- 只有一个元素,所以子节点是一个值为 0 的节点。
- 空数组,无子节点。
- [3,2,1] 中的最大值是 3 ,左边部分是 [] ,右边部分是 [2,1] 。
class Solution {
public:
TreeNode* traveltree(vector<int>& order) {
if (order.size() == 1) {
return new TreeNode(order[0]);
}
// 找到数组中最大的值和对应的下标
int maxvalue = 0;
int index;
for (int i = 0; i < order.size(); i++) {
if (order[i] > maxvalue) {
maxvalue = order[i];
index = i;
}
}
TreeNode* node = new TreeNode(order[index]);
// 最大值所在的下标左区间 构造左子树
if (index > 0) {
vector<int> leftorder(order.begin(), order.begin() + index);
node -> left = traveltree(leftorder);
}
// 最大值所在的下标右区间 构造右子树
if (index < order.size() - 1) {
vector<int> rightorder(order.begin() + index + 1, order.end());
node -> right = traveltree(rightorder);
}
return node;
}
TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
return traveltree(nums);
}
};
617. 合并二叉树
给你两棵二叉树: root1 和 root2 。
想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。
返回合并后的二叉树。
注意: 合并过程必须从两个树的根节点开始。
示例 1:
输入:root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
输出:[3,4,5,5,4,null,7]
class Solution {
public:
TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
// 处理左结点空,右结点不空;左结点不空,右结点空
if (root1 == NULL) {
return root2;
}
if (root2 == NULL) {
return root1;
}
root1->val = root1->val + root2->val; //中
root1->left = mergeTrees(root1->left, root2->left); //左
root1->right = mergeTrees(root1->right, root2->right); //右
return root1;
}
};
700. 二叉搜索树中的搜索
给定二叉搜索树(BST)的根节点 root 和一个整数值 val。
你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null 。
示例 :
输入:root = [4,2,7,1,3], val = 2
输出:[2,1,3]
递归法
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if (root == NULL || root->val == val) {
return root;
}
TreeNode* result = NULL;
if (root->val > val) {
result = searchBST(root->left, val);
}
if (root->val < val) {
result = searchBST(root->right, val);
}
return result;
}
};
迭代法
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
while (root != NULL) {
if (root->val > val) {
root = root->left;
} else if (root->val < val) {
root = root->right;
} else {
return root;
}
}
return NULL;
}
};
98. 验证二叉搜索树
给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
节点的左子树只包含 小于 当前节点的数。
节点的右子树只包含 大于 当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 :
输入:root = [2,1,3]
输出:true
class Solution {
public:
long long maxvalue = LONG_MIN; // 因为后台测试数据中有int最小值
bool isValidBST(TreeNode* root) {
if (root == NULL) {
return true;
}
bool left = isValidBST(root->left);
if (root->val > maxvalue) {
maxvalue = root->val;
} else {
return false;
}
bool right = isValidBST(root->right);
return left && right;
}
};
class Solution {
public:
TreeNode* pre = NULL; // 用来记录前一个节点
bool isValidBST(TreeNode* root) {
if (root == NULL) {
return true;
}
bool left = isValidBST(root->left);
//如果前一个结点的值大于等于根节点的值,则为false
if (pre != NULL && root->val <= pre->val) {
return false;
}
pre = root;
bool right = isValidBST(root->right);
return left && right;
}
};