Day22 二叉树
二叉搜索树的最近公共祖先、二叉搜索树中的插入操作、删除二叉搜索树中的节点
力扣相关例题
235. 二叉搜索树的最近公共祖先
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
示例 :
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root == NULL) {
return root;
}
// 向左遍历(目标区间在左子树)
if (root->val > p->val && root->val > q->val) {
TreeNode* left = lowestCommonAncestor(root->left, p, q);
if (left != NULL) {
return left;
}
}
// 向右遍历(目标区间在右子树)
if (root->val < p->val && root->val < q->val) {
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if (right != NULL) {
return right;
}
}
//剩下的情况就是root节点在区间(p->val <= root->val && root->val <= q->val)或者 (q->val <= root->val && root->val <= p->val)中,
//那么root就是最近公共祖先了,直接返回root
return root;
}
};
701. 二叉搜索树中的插入操作
给定二叉搜索树(BST)的根节点 root 和要插入树中的值 value ,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 ,新值和原始二叉搜索树中的任意节点值都不同。
注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回 任意有效的结果 。
示例 :
输入:root = [4,2,7,1,3], val = 5
输出:[4,2,7,1,3,5]
解释:另一个满足题目要求可以通过的树是:
有返回值
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
if (root == NULL) {
// 创建值为val结点
TreeNode* node = new TreeNode(val);
return node;
}
// 左
if (root->val > val) {
root->left = insertIntoBST(root->left, val);
}
// 右
if (root->val < val) {
root->right = insertIntoBST(root->right, val);
}
return root;
}
};
无返回值
class Solution {
public:
// 定义先前结点
TreeNode* pre;
void traveltree(TreeNode* cur, int val) {
//cur不为空,才是要插入的叶子节点
if (cur == NULL) {
TreeNode* node = new TreeNode(val);
if (pre->val > val) {
pre->left = node;
} else {
pre->right = node;
}
return ;
}
pre = cur;
if (cur->val > val) {
traveltree(cur->left, val);
}
if (cur->val < val) {
traveltree(cur->right, val);
}
return ;
}
TreeNode* insertIntoBST(TreeNode* root, int val) {
pre = new TreeNode(0);
if (root == NULL) {
root = new TreeNode(val);
}
traveltree(root, val);
return root;
}
};
450. 删除二叉搜索树中的节点
给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
一般来说,删除节点可分为两个步骤:
首先找到需要删除的节点;
如果找到了,删除它。
示例 1:
输入:root = [5,3,6,2,4,null,7], key = 3
输出:[5,4,6,2,null,null,7]
解释:给定需要删除的节点值是 3,所以我们首先找到 3 这个节点,然后删除它。
一个正确的答案是 [5,4,6,2,null,null,7], 如下图所示。
另一个正确答案是 [5,2,6,null,4,null,7]。
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
// 没找到删除的节点,遍历到空节点直接返回了
if (root == NULL) {
return NULL;
}
//找到删除的节点
if (root->val == key) {
if (root->left == NULL && root->right == NULL) { // 左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
delete root; //释放叶子结点内存
return NULL;
} else if (root->left == NULL && root->right != NULL) { // 删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
TreeNode* temp = root;
root = root->right;
delete temp; //释放内存
return root;
} else if (root->left != NULL && root->right == NULL) { // 删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
TreeNode* temp = root;
root = root->left;
delete temp;
return root;
} else { // 左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。
TreeNode* node = root->right;
while(node->left != NULL) {
node = node->left;
}
node->left = root->left;
TreeNode* temp = root;
root = root->right;
delete temp; // 释放节点内存
return root;
}
}
// 左
if (root->val > key) {
root->left = deleteNode(root->left, key);
}
// 右
if (root->val < key) {
root->right = deleteNode(root->right, key);
}
return root;
}
};