最近在看Fundamentals of Statistical Signal Processing: Estimation Theory一书时,发现里面的许多公式都是通过矢量形式表达的。但当初学高数的时候老师并没有将矢量形式的公式作为重点讲解,后来学概率论时也都是标量形式的。因此为了补上这一环节,我将一些矢量公式的表达形式和证明写在这里。
本篇博客是这个系列的第一篇,包括与矢量相关的简单概念与导数和微分。
1. 基本概念
1.1 n维实向量空间
我们知道,表示所有实数构成的集合。现假设有两个集合
和
,那么可定义
和
的乘积集合
也就是说,中的所有元素都是
和
中元素的序偶数列。
我们定义,则
是一个由实数点组成的实平面。以此类推,我们可以得到n维实向量空间
。在
中,每一个元素都是长度为n的实向量。我们在
中定义向量的内积
1.2 多元数量值函数
对一个多元数量值函数,我们可以将其自变量视为n维实向量空间
中的一个点
。这样,
的自变量是矢量,但
本身却是一个标量。
1.3 多元向量值函数
让我们从一元向量值函数开始。注意在表达上,这里加粗的是
,而不是
。
设有一元向量值函数,其中
而都是一元数量值函数。可以发现,
的自变量是一个标量,但
却是一个矢量。
下面,我们来看多元向量值函数。注意此处的
和
都要加粗。
设有多元向量值函数 ,其中
而都是n元数量值函数。可以发现,
的自变量是一个矢量,
也是一个矢量。
2. 多元向量值函数的导数与微分
通常在学习高数后,我们都能熟练地掌握多元数量值函数的导数与微分,也就是包括偏导数在内的一系列内容。其实多元向量值函数就是多个多元数量值函数的拼接,在求多元向量值函数的导数与微分时,我们只需要求多个多元数量值函数的导数与微分即可。但是,多元向量值函数的导数与微分中的公式是用向量和矩阵表示的,我们应当熟悉这些表示,方便之后更快地运用。
我们还应注意一点,那就是数学中的向量一般是列向量,只有加上转置符号后才是行向量。
对于多元向量值函数,如果
的每个分量
(数量值函数)都在
处可微,则称
在
处可微,也称
在
处可导。将
称为在
处的微分。注意最后一个等号的右侧是矩阵乘法的形式,其结果的第
行是
我们将在
处的微分记作
,则
其中
实际上,就是
在
处的导数,我们可以记作
。我们也称
为
在
处的雅可比(Jacobi)矩阵。
3. 微分运算法则
本部分对多元向量值函数的微分运算常用法则进行说明与证明
3.1 定理1
设向量值函数与
都在点
处可微,
是在
处可微的数量值函数,则有
(1)在
处可微,并且其导数为
(2)在
处可微,并且其导数为
(3)在
处可微,并且其导数为
(4)若,
,则向量积
在
处可微,并且其导数为
证明:
(1)设,
,则
由于对每一个元素,有
,故原式成立。
(2)设,
,则标量函数
在处可微,且
由梯度的运算性质
从这个公式的证明中,我们可以看到与梯度
的关系:
相当于
的向量形式。标量的梯度是矢量,那么矢量的导数就应当是一个矩阵。
(3)与(2)类似,略。
(4)设,
,则
由于都是单位矢量,对其求微分并不会影响结果。而且
都是一元函数,因此该定理最终的证明形式类似于一元函数的导数运算法则。
3.2 定理2
向量值复合函数的求导也遵循链式法则。设在点
处可微,向量值函数
在对应的点
处可微,则复合函数
在点
处可微,且
根据定理中的设定,我们可以知道是维度为
的矩阵,
是维度为
的矩阵。