排序:对一序列对象根据某个关键字进行排序;
稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
内排序:所有排序操作都在内存中完成;
外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
排序耗时的操作:比较、移动;
排序分类:
(1)交换类:冒泡排序、快速排序;此类的特点是通过不断的比较和交换进行排序;
(2)插入类:简单插入排序、希尔排序;此类的特点是通过插入的手段进行排序;
(3)选择类:简单选择排序、堆排序;此类的特点是看准了再移动;
(4)归并类:归并排序;此类的特点是先分割后合并;
历史进程:一开始排序算法的复杂度都在O(n^2),希尔排序的出现打破了这个僵局;
以下视频是Sapientia University创作的,用跳舞的形式演示排序步骤,这些视频就可以当作复习排序的资料~
冒泡排序视频:http://v.youku.com/v_show/id_XMzMyOTAyMzQ0.html
选择排序视频:http://v.youku.com/v_show/id_XMzMyODk5MDI0.html
插入排序视频:http://v.youku.com/v_show/id_XMzMyODk3NjI4.html
希尔排序视频:http://v.youku.com/v_show/id_XMzMyODk5MzI4.html
归并排序视频:http://v.youku.com/v_show/id_XMzMyODk5Njg4.html
快速排序视频:http://v.youku.com/v_show/id_XMzMyODk4NTQ4.html
上面介绍的排序算法都是基于排序的,还有一类算法不是基于比较的排序算法,即计数排序、基数排序;
预备:最简单的排序
此种实现方法是最简单的排序实现;
缺点是每次找最小值都是单纯的找,而没有为下一次寻找做出铺垫;
算法如下:
- public static int[] simple_sort(int[] arr) {
- for (int i = 0; i < arr.length; i++) {
- for (int j = i + 1; j < arr.length; j++) {
- if (arr[i] > arr[j]) {
- swap(arr, i, j);
- }
- }
- }
- return arr;
- }
一、冒泡排序
冒泡排序相对于最简单的排序有了改进,即每次交换都是对后续有帮助的,大数将会越来越大,小的数将会越来越小;
冒泡排序思想:两两相邻元素之间的比较,如果前者大于后者,则交换;
因此此排序属于交换排序一类,同类的还有现在最常用的排序方法:快速排序;
1.标准冒泡排序
此种方法是最一般的冒泡排序实现,思想就是两两相邻比较并交换;
算法实现如下:
- public static int[] bubble_sort2(int[] arr) {
- for (int i = 0; i < arr.length; i++) {
- for (int j = arr.length - 1; j > i; j--) {
- if (arr[j] < arr[j - 1]) {
- swap(arr, j, j - 1);
- }
- }
- }
- return arr;
- }
2.改进冒泡排序
改进在于如果出现一个序列,此序列基本是排好序的,如果是标准的冒泡排序,则还是需要进行不断的比较;
改进方法:通过一个boolean isChanged,如果一次循环中没有交换过元素,则说明已经排好序;
算法实现如下:
- // 最好:n-1次比较,不移动,因此时间复杂度为O(n),不占用辅助空间
- // 最坏:n(n-1)/2次比较和移动,因此O(n^2),占用交换的临时空间,大小为1;
- public static int[] bubble_sort3(int[] arr) {
- boolean isChanged = true;
- for (int i = 0; i < arr.length && isChanged; i++) {
- isChanged = false;
- for (int j = i + 1; j < arr.length; j++) {
- if (arr[i] > arr[j]) {
- swap(arr, i, j);
- isChanged = true;
- }
- }
- }
- return arr;
- }
二、简单选择排序
简单选择排序特点:每次循环找到最小值,并交换,因此交换次数始终为n-1次;
相对于最简单的排序,对于很多不必要的交换做了改进,每个循环不断比较后记录最小值,只做了一次交换(当然也可能不交换,当最小值已经在正确位置)
算法如下:
- //最差:n(n-1)/2次比较,n-1次交换,因此时间复杂度为O(n^2)
- //最好:n(n-1)/2次比较,不交换,因此时间复杂度为O(n^2)
- //好于冒泡排序
- public static int[] selection_sort(int[] arr) {
- for (int i = 0; i < arr.length - 1; i++) {
- int min = i;
- for (int j = i + 1; j < arr.length; j++) {
- if (arr[min] > arr[j]) {
- min = j;
- }
- }
- if (min != i)
- swap(arr, min, i);
- }
- return arr;
- }
三、简单插入排序
思想: 给定序列,存在一个分界线,分界线的左边被认为是有序的,分界线的右边还没被排序,每次取没被排序的最左边一个和已排序的做比较,并插入到正确位置;我们默认索引0的子数组有序;每次循环将分界线右边的一个元素插入有序数组中,并将分界线向右移一位;
算法如下:
- // 最好:n-1次比较,0次移动 ,时间复杂度为O(n)
- // 最差:(n+2)(n-1)/2次比较,(n+4)(n-1)/2次移动,时间复杂度为 O(n^2)
- public static int[] insertion_sort(int[] arr) {
- int j;
- for (int i = 1; i < arr.length; i++) {
- if (arr[i] < arr[i - 1]) {
- int tmp = arr[i];
- for (j = i - 1; j >= 0 && arr[j] > tmp; j--) {
- arr[j + 1] = arr[j];
- }
- arr[j + 1] = tmp;
- }
- }
- return arr;
- }
简单插入排序比选择排序和冒泡排序好!
四、希尔排序
1959年Shell发明;
第一个突破O(n^2)的排序算法;是简单插入排序的改进版;
思想:由于简单插入排序对于记录较少或基本有序时很有效,因此我们可以通过将序列进行分组排序使得每组容量变小,再进行分组排序,然后进行一次简单插入排序即可;
这里的分组是跳跃分组,即第1,4,7位置为一组,第2,5,8位置为一组,第3,6,9位置为一组;
索引 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
此时,如果increment=3,则i%3相等的索引为一组,比如索引1,1+3,1+3*2
一般增量公式为:increment = increment/3+1;
算法实现如下:
- // O(n^(3/2))
- //不稳定排序算法
- public static int[] shell_sort(int[] arr) {
- int j;
- int increment = arr.length;
- do {
- increment = increment / 3 + 1;
- for (int i = increment; i < arr.length; i++) { //i=increment 因为插入排序默认每组的第一个记录都是已排序的
- if (arr[i] < arr[i - increment]) {
- int tmp = arr[i];
- for (j = i - increment; j >= 0 && arr[j] > tmp; j -= increment) {
- arr[j + increment] = arr[j];
- }
- arr[j + increment] = tmp;
- }
- }
- } while (increment > 1);
- return arr;
- }
五、堆排序
Floyd和Williams在1964年发明;
大根堆:任意父节点都比子节点大;
小根堆:任意父节点都比子节点小;
不稳定排序算法,是简单选择排序的改进版;
思想:构建一棵完全二叉树,首先构建大根堆,然后每次都把根节点即最大值移除,并用编号最后的节点替代,这时数组长度减一,然后重新构建大根堆,以此类推;
注意:此排序方法不适用于个数少的序列,因为初始构建堆需要时间;
算法实现如下:
- // 时间复杂度为O(nlogn)
- //不稳定排序算法
- //辅助空间为1
- //不适合排序个数较少的序列
- public static int[] heap_sort(int[] arr) {
- int tmp[] = new int[arr.length + 1];
- tmp[0] = -1;
- for (int i = 0; i < arr.length; i++) {
- tmp[i + 1] = arr[i];
- }
- // 构建大根堆:O(n)
- for (int i = arr.length / 2; i >= 1; i--) {
- makeMaxRootHeap(tmp, i, arr.length);
- }
- // 重建:O(nlogn)
- for (int i = arr.length; i > 1; i--) {
- swap(tmp, 1, i);
- makeMaxRootHeap(tmp, 1, i - 1);
- }
- for (int i = 1; i < tmp.length; i++) {
- arr[i - 1] = tmp[i];
- }
- return arr;
- }
- private static void makeMaxRootHeap(int[] arr, int low, int high) {
- int tmp = arr[low];
- int j;
- for (j = 2 * low; j <= high; j*=2) {
- if (j < high && arr[j] < arr[j + 1]) {
- j++;
- }
- if (tmp >= arr[j]) {
- break;
- }
- arr[low] = arr[j];
- low = j;
- }
- arr[low] = tmp;
- }
六、归并排序
稳定排序算法;
思想:利用递归进行分割和合并,分割直到长度为1为止,并在合并前保证两序列原本各自有序,合并后也有序;
实现代码如下:
- // 稳定排序;
- // 时间复杂度O(nlogn)
- // 空间复杂度:O(n+logn)
- public static int[] merge_sort(int[] arr) {
- Msort(arr, arr, 0, arr.length - 1);
- return arr;
- }
- private static void Msort(int[] sr, int[] tr, int s, int t) {
- int tr2[] = new int[sr.length];
- int m;
- if (s == t) {
- tr[s] = sr[s];
- } else {
- m = (s + t) / 2;
- Msort(sr, tr2, s, m);
- Msort(sr, tr2, m + 1, t);
- Merge(tr2, tr, s, m, t);
- }
- }
- private static void Merge(int[] tr2, int[] tr, int i, int m, int t) {
- int j, k;
- for (j = i, k = m + 1; i <= m && k <= t; j++) {
- if (tr2[i] < tr2[k]) {
- tr[j] = tr2[i++];
- } else {
- tr[j] = tr2[k++];
- }
- }
- while (i <= m) {
- tr[j++] = tr2[i++];
- }
- while (k <= t) {
- tr[j++] = tr2[k++];
- }
- }
七、快速排序
冒泡排序的升级版;现在用的最多的排序方法;
思想:选取pivot,将pivot调整到一个合理的位置,使得左边全部小于他,右边全部大于他;
注意:如果序列基本有序或序列个数较少,则可以采用简单插入排序,因为快速排序对于这些情况效率不高;
实现代码如下:
- // 不稳定排序算法
- // 时间复杂度:最好:O(nlogn) 最坏:O(n^2)
- // 空间复杂度:O(logn)
- public static int[] quick_sort(int[] arr) {
- qsort(arr, 0, arr.length - 1);
- return arr;
- }
- private static void qsort(int[] arr, int low, int high) {
- int pivot;
- if (low < high) {
- pivot = partition(arr, low, high);
- qsort(arr, low, pivot);
- qsort(arr, pivot + 1, high);
- }
- }
- private static int partition(int[] arr, int low, int high) {
- int pivotkey;
- pivotkey = arr[low];//选择pivot,此处可以优化
- while (low < high) {
- while (low < high && arr[high] >= pivotkey) {
- high--;
- }
- swap(arr, low, high);//交换,此处可以优化
- while (low < high && arr[low] <= pivotkey) {
- low++;
- }
- swap(arr, low, high);
- }
- return low;
- }
优化方案
(1)选取pivot:选取pivot的值对于快速排序至关重要,理想情况,pivot应该是序列的中间数;
而前面我们只是简单的取第一个数作为pivot,这点可以进行优化;
优化方法:抽多个数后取中位数作为pivot;
(2)对于小数组使用插入排序:因为快速排序适合大数组排序,如果是小数组,则效果可能没有简单插入排序来得好;
如果想进行优化,则可以使用以下代码:
- public static int[] quick_sort(int[] arr) {
- if(arr.length>10){
- qsort(arr, 0, arr.length - 1);
- }
- else{
- insertion_sort(arr);
- }
- return arr;
- }
八、计数排序
计数排序是典型的不是基于比较的排序算法,基于比较的排序算法最少也要O(nlogn),有没有可能创造线性时间的排序算法呢?那就是不基于比较的排序算法;
如果数组的数据范围为0~100,则很适合此算法;
复杂度: O(n+k), n为原数组长度,k为数据范围;
思想:
(1)首先找出数组中的最大值,然后创建一个计数数组(用来记录每个元素的数量),长度为max,比如数组为{1,1,2,3,4,5},则创建一个长度为6的数组count[],count[1]存放数值1出现的次数,即2;
(2)填充count数组,即遍历原数组,并且count[arr[i]-1]++;
(3)对count数组进行累加,即count[i] = count[i] + count[i-1];
(4)反向填充result数组,result[count[arr[i]]-1] = arr[i];
代码如下:
- import java.util.ArrayList;
- import java.util.Scanner;
- /**
- * 计数排序适用于:
- * (1)数据范围较小,建议在小于1000
- * (2)每个数值都要大于等于0
- * @author xiazdong
- *
- */
- public class Count_Sort {
- public static void main(String[] args) {
- int[] array = readArray();
- System.out.print("排序前数组为:");
- print(array);
- int result[] = count_sort(array);
- System.out.print("排序后数组为:");
- print(result);
- }
- //读取数组函数
- private static int[] readArray() {
- Scanner in = new Scanner(System.in);
- ArrayList<Integer> list = new ArrayList<Integer>();
- while(true){
- System.out.print("输入数字:");
- int element = in.nextInt();
- if(element==-1){
- break;
- }
- else{
- list.add(element);
- }
- }
- Integer[] arr = list.toArray(new Integer[0]);
- int[]array = new int[arr.length];
- for(int i=0;i<arr.length;i++){
- array[i] = arr[i];
- }
- return array;
- }
- //计数排序
- public static int[] count_sort(int arr[]){
- int gap = findGap(arr);
- int[] count = new int[gap];
- int[] result = new int[arr.length];
- for(int i=0;i<arr.length;i++){
- count[arr[i]]++;
- }
- for(int i=1;i<count.length;i++){
- count[i] = count[i] + count[i-1];
- }
- //反向填充结果数组
- for(int i=arr.length-1;i>=0;i--){
- result[count[arr[i]]-1] = arr[i];
- count[arr[i]]--;
- }
- return result;
- }
- public static void print(int result[]){
- for(int a:result){
- System.out.print(a+" ");
- }
- System.out.println();
- }
- /**
- * 找出数组的数据范围,即最大数的值
- * @param arr
- * @return
- */
- private static int findGap(int[] arr) {
- int max = arr[0];
- for(int i=1;i<arr.length;i++){
- if(max<arr[i]){
- max = arr[i];
- }
- }
- return (max+1);
- }
- }
九、基数排序
基数排序也是非比较的排序算法,对每一位进行排序,从最低位开始排序,复杂度为O(kn),为数组长度,k为数组中的数的最大的位数;
比如{987,789} ,先通过个位数排序:{987,789},再通过十位数排序:{987,789},再通过百位数排序:{789,987}
思想:
(1)取得数组中的最大数,并取得位数;
(2)arr为原始数组,从最低位开始取每个位组成radix数组;
(3)对radix进行计数排序(利用计数排序适用于小范围数的特点);
- import java.util.ArrayList;
- import java.util.Scanner;
- /**
- * 计数排序适用于:
- * (1)数据范围较小,建议在小于1000
- * (2)每个数值都要大于等于0
- * @author xiazdong
- *
- */
- public class Count_Sort {
- public static void main(String[] args) {
- int[] array = new int[]{1046,2084,9046,12074,56,7026,8099,17059,33,1};
- System.out.print("排序前数组为:");
- print(array);
- int result[] = radix_sort(array);
- System.out.print("排序后数组为:");
- print(result);
- }
- //基数排序 O(kn)
- public static int[] radix_sort(int[]arr){
- int radix[] = new int[arr.length];
- int count = 1;
- int n = findMaxLength(arr);
- for(int i=0;i<n;i++){
- radix = getRadix(arr,count);
- arr = count_sort(arr, radix);
- count *=10;
- }
- return arr;
- }
- private static int findMaxLength(int[] arr) {
- int max = arr[0];
- for(int i=1;i<arr.length;i++){
- if(max<arr[i]){
- max = arr[i];
- }
- }
- int count = 1;
- int mcount = 1;
- while((max / mcount)!=0){
- mcount = 1;
- count++;
- for(int i=0;i<count;i++){
- mcount *=10;
- }
- }
- return count;
- }
- //取得需要排序的位的数组
- private static int[] getRadix(int[] arr,int count) { //O(n)
- int radix[] = new int[arr.length];
- for(int i=0;i<arr.length;i++){
- radix[i] = arr[i]/count % 10;
- }
- return radix;
- }
- //类似计数排序
- //arr为原始数组
- //radix为需要排序的位的数组
- public static int[] count_sort(int arr[],int radix[]){
- int gap = findGap(radix);
- int[] count = new int[gap];
- int[] result = new int[radix.length];
- for(int i=0;i<radix.length;i++){
- count[radix[i]]++;
- }
- for(int i=1;i<count.length;i++){
- count[i] = count[i] + count[i-1];
- }
- //反向填充结果数组
- for(int i=radix.length-1;i>=0;i--){
- result[count[radix[i]]-1] = arr[i];
- count[radix[i]]--;
- }
- return result;
- }
- public static void print(int result[]){
- for(int a:result){
- System.out.print(a+" ");
- }
- System.out.println();
- }
- /**
- * 找出数组的数据范围,即最大数的值
- * @param arr
- * @return
- */
- private static int findGap(int[] arr) {
- int max = arr[0];
- for(int i=1;i<arr.length;i++){
- if(max<arr[i]){
- max = arr[i];
- }
- }
- return (max+1);
- }
- }
对比图
此图摘自http://www.cnblogs.com/cj723/archive/2011/04/29/2033000.html的图
总结:每个排序都有每个排序的优点,我们需要在适当的时候用适当的算法;
比如在基本有序、数组规模小时用直接插入排序;
比如在大数组时用快速排序;
比如如果要想稳定性,则使用归并排序;
摘录维基百科图片: