数据挖掘在企业中应用的四种途径


数据激增是当今社会的一大特性,如何有效的利用数据挖掘方法,从海量信息中提取出有用的模式和规律而不仅仅是“望洋兴叹”,已经成为人们迫切的需求。企业应该将数据挖掘视为一大法宝,利用它将数据转化为商业智能,提高企业的核心竞争力。从投资的角度来看,如果对数据研究所支付的费用少于研究成果所带来的价值,数据挖掘就值得去做。

正如修行的省悟过程一样,要将数据挖掘引入公司,并非只有一种途径。我们的最终目的是解决企业的业务问题,为企业提供更大的商机。本文简要介绍了将数据挖掘技术应用到企业中的四种有效途径。

一、购买成熟的模型

       如果企业的问题已经有了现成的解决方案,便没有必要再去耗费时间和资金去建立一个新的模型了。这个模型的形式可能是一系列的关联规则,也可能是一个确定了系数的回归模型,或是一个训练好了的神经网络模型——它可以直接应用到实际问题中。我们要做的只是将自己的数据“喂”给它,模型经过自动消化处理,得出一个精简的答案:诸如哪些老客户面临流失的危险?哪些新客户是最有潜力带给公司价值的?

这种方法采用了“拿来主义”,是最节省气力的,不失为一个好办法。美国的银行大都采用了信用评估系统,当客户递交贷款申请后,该系统根据用户填写的一大串资料快速对客户信用风险做出预测。实际表明,该系统能够大大提高工作的效率,而且效果也不会逊于信贷员的经验判断。但是,这种评分机制将众多不同的数据浓缩为一个结果,很多细节上的差别无疑被忽视了——客户信用评分高或低的具体原因没有被体现出来。

另外,这种方便、快捷的方法也极其缺少灵活性:如果使用的条件发生了变化,模型难以随之做出改动。因此,必须要注意使用购买模型的先决条件:你目前的形式包括产品、市场、客户关系等必须和该模型当初建立时的假设是一致的。盲目生搬硬套,势必会产生毫无价值甚至荒谬的结果,一旦不经意的应用,危害就难说了。

二、使用行业应用软件

       顾名思义,行业应用软件是为某一行业领域量身定做的。从底层的数据分析处理一直到顶层的交互界面都是结合特定行业的业务流程和专业特色来设计、开发的。虽然它的应用领域比较狭窄,但较之直接购买的模型,它可以更多的融入和结合人的判断,提高了灵活性。而且,相对于通用数据挖掘软件,它能够很好的利用专业领域的各种知识。

       目前比较流行的客户流失管理软件,被电信、超市、电子商务等许多不同类型的企业所应用,他们共同的目标是为了提前发现有可能流失的客户群,及时反应,做出相应的挽留措施。此类软件可以结合企业自身的规模、用户、产品、交易额、市场环境、挖掘目标等具体条件来控制和实施数据挖掘的过程。

通常,行业应用软件里嵌入了多个建模的模板,使用向导的方式辅助用户完成模型的建立,然后从中选取最优。其实,这种“最优选择”也只是相对的,因为辅助建模的过程是僵硬的,它无法完成数据挖掘中最重要的部分,包括正确理解和定义商业问题、将有用的数据挑选出来转换为潜在的信息、对建模结果进行理性的解释和评价。

固然,这类软件采用了专业领域的表达方式和解决特定问题的用户界面,从而易于理解而且自动性高,使实施的过程变得相对简单。但是,如果你的企业拥有更加复杂的数据和更加具体的挖掘目标,就需要采用更加高级的数据挖掘方法了。

三、聘请专家实施项目

       他山之石,可以攻玉。如果数据挖掘并非只是为了解决眼前的问题,而是着眼于企业长远的成长;如果企业的数据来自众多系统,格式复杂也并非纯净;如果不明确如何利用挖掘的成果创造新的商机;如果企业内部的成员没有足够的能力保证项目的顺利实施——此时,聘请外部专家来引导数据挖掘项目走向成功,才是明智的选择。

       你可以联系数据挖掘软件销售商(诸如SASSPSSMiner等),邀请数据挖掘工程师带着功能强大(操作同样复杂)的数据挖掘软件来到企业,将他们的专业知识应用到企业的数据挖掘过程中;你也可以带着企业的数据到高校或咨询公司等数据挖掘中心,利用他们的软件和硬件,和他们一起工作。

如本文开始所言,数据挖掘的过程绝非一蹴而就,而是如同僧人的修行省悟,可能漫长而反复。建模方法千变万化,而数据静静的呆在那里,十足一副以不变应万变的姿态。这里有条条大路,但并非都能通向罗马,为了找到最有效的模型,我们通常需要反复检验,做出选择

一般存在以下几个决定性的步骤需要放慢脚步,仔细考察:

1. 根据现有的人力、物力选取建模工具

2. 根据数据的特点对模型分类,制定标准来拆分数据,从而建立不同的模型;

3. 调整参数,从决策树、神经网络等算法中选取最有效的建立最终模型

4. 建模过程中要具体问题具体分析,有效的抽取、清洗、转换、重组数据

需要强调的是,在这个过程中一定要注意企业人员和挖掘人员之间的沟通和协调,才能将企业积累的商业智慧和挖掘人员的专业知识完美结合。

四、量身定做开发自己的数据挖掘平台

       由于商业问题的特殊性,数据挖掘工具并非像某些促销广告所言:“总有一款适合您”。通过考察企业问题的特殊性,对购买软件、聘请专家所需要的投资和挖掘成果应用后可能带来的回报等因素进行综合比较,你也可以考虑开发一个适合自身环境的数据挖掘工具。虽然可能会花去较长的时间,但成功之后,受益久远。这个量身定做的数据挖掘工具可以随时根据企业环境的变化做出修正和调整,并且有坚实的技术支持作为保障。

       这类状况在商业范围内比较少见,通常在医药、体育等自身数据差异较大、数据挖掘研究尚不全面成熟的领域使用。主要表现为走进高校,和具有专业知识的导师及其研究生小组互动完成。

 

      以上方法的选择由企业环境所决定,可以选其一,也可以将几种方法捆绑起来,优势互补。最后还要强调两点:第一,并非所有的软件都能完全实现自动化,也并非所有的软件都能取代人的智慧,如果没有专业的数据挖掘技能,即使数据挖掘工具的功能再强大,也很难产生好的结果。所以,必须有数据挖掘领域的专家参与,以人为本,才能保证企业数据挖掘流程沿着安全、有效的轨道进行。第二,企业自身远比外部更了解自己的业务和客户,最好的方法是在企业内部培养数据挖掘骨干人员——只有同时做到精通企业问题和数据分析方法,才能将数据挖掘的效用发挥到极致。


转自http://blogger.org.cn/blog/more.asp?name=DMman&id=31986

数据挖掘在各行业应用论文 数据仓库与数据挖掘.caj 空间数据挖掘技术.caj 数据仓库与数据挖掘技术及其在科技情报业的应用前景.caj 相关案件的数据挖掘.caj 数据挖掘技术.caj 一种实时过程控制数据挖掘算法研究.caj EIS 环境下的数据挖掘技术的研究.caj 数据挖掘及其工具的选择.caj 数据挖掘技术与国商业银行业务发展策略.caj 数据挖掘工具DMTools的设计与实现.caj 数据仓库、数据挖掘在银行应用.caj 基于信息熵的地学空间数据挖掘模型.caj 数据挖掘及其在商业银行应用.caj 数据挖掘与决策支持系统.caj 数据仓库、数据集市和数据挖掘.caj 数据仓库与数据挖掘1.caj IDSS 数据仓库和数据挖掘的研究与实现.caj 基于粗糙集理论的数据挖掘模型.caj 数据挖掘及其在 SXWG_EIS 应用.caj 数据挖掘——技术与应用综述.caj 挖掘转移规则一种新的数据挖掘技术.caj 以地物识别和分类为目标的高光谱数据挖掘.caj 数据挖掘与虚拟数据库.caj 数据挖掘与电力系统.caj 浅说数据挖掘.caj 带Rough算子的决策规则及数据挖掘的软计算.caj 数据挖掘系统的一种实现策略.caj 信息检索数据挖掘技术.caj 红外光谱谱图库数据挖掘.caj 介粗集及其在数据挖掘应用.caj 数据挖掘在音高变化规律学习应用.caj 数据挖掘技术在财经领域的应用.caj 知识发现和数据挖掘的研究.caj 数据仓库与数据挖掘技术浅谈.caj 用户访问模式数据挖掘的模型与算法研究.caj 数据仓库的建设与数据挖掘技术浅析.caj 分类特征规则的数据挖掘技术.caj 数据挖掘技术的主要方法及其发展方向.caj OLAP和数据挖掘技术在Web日志上的应用.caj 数据挖掘技术12.caj 数据挖掘技术初探.caj 探索式数据挖掘模型的讨论.caj 前向网络bp算法在数据挖掘运用.caj 数据挖掘在Internet信息导航系统应用研究.caj 数据挖掘技术123.caj 基于粗糙集(Rough set)的数据挖掘及其实现.caj 数据挖掘技术在建模、优化和故障诊断应用.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj 一种测试数据挖掘算法的数据源生成方法.caj 基于数据挖掘的类比推理技术在石油产品分析系统的实现.caj 神经网络在数据挖掘应用研究.caj 数据挖掘方法的评述.caj 基于数据挖掘的类比推理技术在石油产品分析系统的实现1.caj 一个面向电子商务的数据挖掘系统的设计与实现.caj 数据挖掘技术在煤与瓦斯突出预测应用研究.caj 基于数据抽取器实现数据挖掘.caj 基于数据挖掘的群决策模型.caj 基于数据挖掘的普通话韵律规则学习.caj 数据挖掘和知识发现的技术方法.caj 可视化数据挖掘技术及其应用.caj 神经网络数据挖掘方法的数据准备问题.kdh 基于CORBA的数据挖掘工具KDD-DC.caj 基于高校人事信息库的数据挖掘研究.caj 数据挖掘管理系统.caj 电信网告警数据库数据挖掘.caj 数据挖掘原理、方法及其应用.caj 一种基于数据仓库的数据挖掘系统的结构框架.caj OLAP与数据挖掘一体化模型的分析与讨论.caj 一种新型数据分析技术——数据挖掘.caj aaa数据挖掘和数据仓库及其在电信业应用.caj 数据挖掘技术及其应用.caj 数据挖掘概念树的标准、生成和实现.kdh XML与面向Web的数据挖掘技术.caj 数据挖掘和数据仓库及其在电信业应用.caj 数据挖掘技术及其在地学应用.caj 结合数据融合和数据挖掘的医疗监护报警.caj 基于多媒体数据库的数据挖掘系统原型.caj 数据挖掘技术1.caj 股票信息的数据挖掘.caj 多媒体数据挖掘的相关媒体特征库方法.caj 基于数据挖掘的深部采场岩爆知识的自动获取.caj 空间数据挖掘理论与方法的研究.caj 金融数据挖掘的非线性相关跟踪技术(英文).caj 数据挖掘技术的一个应用模型.caj DNA数据挖掘和启动子识别.caj 数据仓库与数据挖掘12.caj 数据挖掘系统设计.caj 数据挖掘方法的研究.caj 用数据挖掘技术优选侧钻井井位.caj 关注政府上网后的数据挖掘.kdh 数据挖掘技术及其在电力系统应用.caj 目前数据挖掘算法的评价.caj 基于数据挖掘的地下硐室围岩稳定性判别.caj 基于属性分类的数据挖掘方法.caj 基于数据挖掘模型的高压输电线系统故障诊断.caj 用于建模、优化、故障诊断的数据挖掘技术.caj 格子机数据挖掘方法.caj 数据挖掘及其在电力系统应用.kdh 用于
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值