思路:
还是一道很标准的最短路题,只不过需要我们去逆向一下思维,因为所有点都是要到达大本营的,不妨从大本营出发,到所有点,只需要一次最短路就结束了。
这个思维也是非常非常常见了,而且天梯赛也太爱考最短路了吧。
作者用的bfs+dijk+堆优化
代码:
#include <iostream>
#include <queue>
#include <cstring>
#define N 110
using namespace std;
int m,n,k,mp[N][N],x,y,s,t;
int dist[N][N],vis[N][N];
int dx[4]={0,0,1,-1},dy[4]={1,-1,0,0};
struct node{
int d,x,y;
bool operator < (const node &a) const{
return d>a.d;
}
};
void bfs(){
memset(dist,0x3f,sizeof dist);
dist[s][t]=0;
priority_queue<node> q;
q.push({0,s,t});
while(q.size()){
node tmp=q.top();
q.pop();
int x=tmp.x,y=tmp.y;
if(vis[x][y]) continue;//类似dijk,找到第一条最短的路就vis[x][y]=1
vis[x][y]=1;
for(int i=0;i<4;i++){//四个方向扩展
int xx=x+dx[i],yy=y+dy[i];
if(xx<1||xx>m||yy<1||yy>n) continue;//边界
if(mp[xx][yy]==0) continue;//不可走
if(dist[xx][yy]>dist[x][y]+1){//距离变短
dist[xx][yy]=dist[x][y]+1;
q.push({dist[xx][yy],xx,yy});
}
}
}
}
int main(){
cin>>m>>n;
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++){
cin>>mp[i][j];
if(mp[i][j]==2) s=i,t=j;//起点
}
bfs();
vector<int> ans[N*N];//ans[i]:时间为i的队伍编号
cin>>k;
for(int i=1;i<=k;i++){
cin>>y>>x;//看题目,题目对下标的定义是反过来的,为了方便理解,再反回去
if(dist[x][y]!=0x3f3f3f3f){
ans[dist[x][y]].push_back(i);
}
}
int fg=0,id;
for(int i=1;i<=n*m;i++){//从最小的时间开始枚举
if(ans[i].size()!=1) continue;
fg=i,id=ans[i][0];//第一个只有一个队伍到的时间
break;
}
if(fg) cout<<id<<" "<<fg;
else cout<<"No winner.";
return 0;
}