仓库规划
问题描述
西西艾弗岛上共有 n个仓库,依次编号为 1…n。每个仓库均有一个m维向量的位置编码,用来表示仓库间的物流运转关系。
具体来说,每个仓库 i均可能有一个上级仓库 j,满足:仓库 j 位置编码的每一维均大于仓库 i 位置编码的对应元素。比如编码为 (1,1,1)的仓库可以成为 (0,0,0)的上级,但不能成为 (0,1,0)的上级。如果有多个仓库均满足该要求,则选取其中编号最小的仓库作为仓库 i的上级仓库;如果没有仓库满足条件,则说明仓库 i 是一个物流中心,没有上级仓库。
现给定 n个仓库的位置编码,试计算每个仓库的上级仓库编号。
输入格式
从标准输入读入数据。
输入共 n + 1行。
输入的第一行包含两个正整数 n和 m,分别表示仓库个数和位置编码的维数。
接下来 n行依次输入 n个仓库的位置编码。其中第 i行(1<= i <= n)包含 m个整数,表示仓库 i的位置编码。
输出格式
输出到标准输出。
输出共 n行。
第 i 行(1<=i<=n)输出一个整数,表示仓库 i的上级仓库编号;如果仓库 i没有上级,则第 i行输出 0。
样例输入
4 2
0 0
-1 -1
1 2
0 -1
样例输出
3
1
0
3
样例解释
对于仓库 2:(-1,-1) 来说,仓库1:(0,0)和仓库 3:(1,2)均满足上级仓库的编码要求,因此选择编号较小的仓库 1作为其上级。
子任务
50%的测试数据满足 m = 2;
全部的测试数据满足 0<m<=10、0<n<=1000,且位置编码中的所有元素均为绝对值不大于 10^6的整数。
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int n,m;
const int N = 1010;
const int M = 15;
int a[N][M];
bool f(int i,int j)
{
for(int k=0;k<m;k++)
{
if(a[i][k] >= a[j][k]) return false;
}
return true;
}
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
cin>>a[i][j];
}
}
for(int i=0;i<n;i++)
{
int res = 0;
for(int j=0;j<n;j++)
{
if(j != i)
{
if(f(i,j))
{
res = j+1;
break;
}
}
}
cout<<res<<endl;
}
return 0;
}