PAT乙级真题1079 || 延迟的回文数(详解,C/C++示例,测试点分析)

微信公众号:计算机黑科学大全
【欢迎关注微信公众号:计算机黑科学大全,对话框回复:PAT乙级真题】获取全部真题详解及代码示例
个人博客地址:https://mzwang.top

延迟的回文数

题目描述:

给定一个 k+1 位的正整数 N,写成 a(k)⋯a(1)a(0) 的形式,其中对所有 i 有 0≤a(i)<10 且 a(k)>0。N 被称为一个回文数,当且仅当对所有 i有 a(i)=a(k−i)。零也被定义为一个回文数。

非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number

给定任意一个正整数,本题要求你找到其变出的那个回文数。

输入格式:

输入在一行中给出一个不超过1000位的正整数。

输出格式:

对给定的整数,一行一行输出其变出回文数的过程。每行格式如下

A + B = C

其中 A 是原始的数字,BA 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.

输入样例1:

97152

输出样例1:

97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

输入样例2:

196

输出样例2:

196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.

题目来源:PAT乙级1079
作者:CHEN, Yue
单位:浙江大学

问题解决:

解题思想

此题我主要采用了STL的字符串string进行处理。主要设置了三个函数,分别为逆转函数、大数相加函数以及判断是否为回文数函数。注意string的一些特性,此题也不难。

坑点提醒

None

代码示例(C/C++)

小提示:请将以下代码保存为.cpp格式(C++程序)左右滑动代码以查看完整代码(复制本文链接到电脑端浏览效果更佳)

#include <iostream>
#include <vector>
using namespace std;

//逆转
void reverse(string a, string& b) {
    b.clear();
    int len = a.size();
    for (int i = len - 1; i >= 0; i--) {
        b += a[i];
    }
}
//相加
void big_add(string a, string b, string& c) {
    c.clear();  //注意清空
    int len = a.size();
    int m = 0;
    for (int i = len - 1; i >= 0; i--) {
        int tmp = a[i] + b[i] - 2 * '0' + m;
        c += (tmp % 10 + '0');
        m = tmp / 10;
    }
    if (m) {   //有进位
        c += m + '0';   //注意都要转换为字符
    }
}
//判断是否为回文数
int is_pal(string a) {
    int len = a.size();
    for (int i = len - 1; i >= 0; i--) {
        if(a[i] != a[len - i -1]) {
            return 0;
        }
    }
    return 1;
}
int main() {
    string vi;
    cin >> vi;
    int num = 10;
    if (is_pal(vi)) {
        cout << vi << " is a palindromic number." << endl;
        return 0;
    }
    string b;
    string c;
    string t;
    while (num--) {
        reverse(vi, b);
        big_add(vi, b, c);
        reverse(c, t);
        cout << vi << " + " << b << " = " << t << endl;
        if (is_pal(c)) {
            cout << t << " is a palindromic number." << endl;
            return 0;
        }
        vi = t;
    }
    cout << "Not found in 10 iterations.";
    return 0;
}

微信号:QKD2015WMZ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值