【欢迎关注微信公众号:计算机黑科学大全,对话框回复:PAT乙级真题】获取全部真题详解及代码示例
个人博客地址:https://mzwang.top
延迟的回文数
题目描述:
给定一个 k+1 位的正整数 N,写成 a(k)⋯a(1)a(0) 的形式,其中对所有 i 有 0≤a(i)<10 且 a(k)>0。N 被称为一个回文数,当且仅当对所有 i有 a(i)=a(k−i)。零也被定义为一个回文数。
非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )
给定任意一个正整数,本题要求你找到其变出的那个回文数。
输入格式:
输入在一行中给出一个不超过1000位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C
其中
A
是原始的数字,B
是A
的逆转数,C
是它们的和。A
从输入的整数开始。重复操作直到C
在 10 步以内变成回文数,这时在一行中输出C is a palindromic number.
;或者如果 10 步都没能得到回文数,最后就在一行中输出Not found in 10 iterations.
。输入样例1:
97152
输出样例1:
97152 + 25179 = 122331 122331 + 133221 = 255552 255552 is a palindromic number.
输入样例2:
196
输出样例2:
196 + 691 = 887 887 + 788 = 1675 1675 + 5761 = 7436 7436 + 6347 = 13783 13783 + 38731 = 52514 52514 + 41525 = 94039 94039 + 93049 = 187088 187088 + 880781 = 1067869 1067869 + 9687601 = 10755470 10755470 + 07455701 = 18211171 Not found in 10 iterations.
题目来源:PAT乙级1079
作者:CHEN, Yue
单位:浙江大学
问题解决:
解题思想
此题我主要采用了STL的字符串string
进行处理。主要设置了三个函数,分别为逆转函数、大数相加函数以及判断是否为回文数函数。注意string
的一些特性,此题也不难。
坑点提醒
None
代码示例(C/C++)
小提示:请将以下代码保存为.cpp
格式(C++程序)左右滑动代码以查看完整代码(复制本文链接到电脑端浏览效果更佳)
#include <iostream>
#include <vector>
using namespace std;
//逆转
void reverse(string a, string& b) {
b.clear();
int len = a.size();
for (int i = len - 1; i >= 0; i--) {
b += a[i];
}
}
//相加
void big_add(string a, string b, string& c) {
c.clear(); //注意清空
int len = a.size();
int m = 0;
for (int i = len - 1; i >= 0; i--) {
int tmp = a[i] + b[i] - 2 * '0' + m;
c += (tmp % 10 + '0');
m = tmp / 10;
}
if (m) { //有进位
c += m + '0'; //注意都要转换为字符
}
}
//判断是否为回文数
int is_pal(string a) {
int len = a.size();
for (int i = len - 1; i >= 0; i--) {
if(a[i] != a[len - i -1]) {
return 0;
}
}
return 1;
}
int main() {
string vi;
cin >> vi;
int num = 10;
if (is_pal(vi)) {
cout << vi << " is a palindromic number." << endl;
return 0;
}
string b;
string c;
string t;
while (num--) {
reverse(vi, b);
big_add(vi, b, c);
reverse(c, t);
cout << vi << " + " << b << " = " << t << endl;
if (is_pal(c)) {
cout << t << " is a palindromic number." << endl;
return 0;
}
vi = t;
}
cout << "Not found in 10 iterations.";
return 0;
}