开题报告-轨道交通智慧客流分析预测

本文探讨了地铁短时客流预测的重要性和研究现状,着重介绍了基于深度学习(如LSTM)和传统模型(如ARIMA)的组合策略,以及课题的具体研究内容和技术路线,旨在提升城市交通管理的安全性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.课题研究的目的和意义

1.1究目的

为各个相关部门提供科学的数据能够有效的分配资源和人力,提高整个交通 系统的安全性、舒适性和经济效益。 能够为有关部门处理紧急突发事件提供有 效的数据支持和决策依据 尤其是在组织大型活动时、客流量的预测能够帮助轨 道交通运营单位做好相应乘客运输能力的调整匹配,既能够保证活动的顺利进行 也能够减少对其他居民的影响。

1.2研究意义

城市交通管理中存在的短时客流饱和现象主要是自市民生活习惯和自然灾害两种来源。从市民生活习惯来看,获取未来客流的波动情况,实时调整列车发车间隔和数量,实现客流需求与列车动力合理匹配成为解决问题的关键。同时,以此数据开展预测研究,分析未来客流状态,建立拥堵信息库,形成出行建议,实时指导乘客出行并为其规划出行路线,是解决城市交通信息化建设的重要研究部分。

从自然灾害发生的预测来看,短时客流预测研究,通过研究周期性自然灾害的发生,可及时调整列车发车间隔,保障列车运行安全性,提前通知站务人员采取相应的安全防范措施、维护站点秩序,采取交通管制等措施保障乘客的乘车安全,实现客流需求与列车运力的匹配,同时可作为系统的客流状态评估基础,使列车运行趋于合理,规避安全隐患。

地铁客流短时预测研究针对以上两种易发、高发安全隐患,研究结果可为智慧交通系统提供数据支撑,帮助市民合理规划出行路线,给出拥挤点数据和旅行提示,绕过交通拥堵路段,提供给市民一个安全、便利的出行环境;另一方面,为地铁站点管理部门提供相应的预警,提前部署安保措施,排查站点安全隐患,保障车站安全运行。因此,地铁短时预测研究对解决城市交通管理存在的最主要安全隐患具有迫切的需求性,其研究意义非同一般。

2.国内外研究现状

地铁站客流量因受乘客不同出行目的及出行时间等影响,客流整体变化趋势呈动态变化,非常复杂,这也使如何准确进行地铁客流预测成为一道难题,无数国内外学者将其作为研究对象。现如今,中长期客流预测技术在我国的宏观调控中起着举足轻重的作用。但随着研究的深入发展,中长期客流预测技术发展已经趋于平缓、很难在短时间再取得技术上的重大 突破,越来越多的学者由此开始把注意力放到了短时客流预测上。与中长期客流预测相比,短期客流预测具有更短的时间粒度、更庞大的数据量和更多的细节需求,且预测模型方法尚不完善,相关研究成果较少,大多数都是针对某一具体路段的车流量进行预测。如今随着数据时代的到来,出行数据的收集与处理越来越简单并专业化,大量的数据使城市轨道交通的短期客流预测逐渐增多。

目前,客流预测模型主要基于三类方法:统计算法,传统机器学习和深度学习。早期的客流预测模型使用统计算法分析客流序列的时间特征,如蔡昌俊等[1]根据进出站客流历史数据构建乘积自回归整合移动(Auto-Regressive Integrated Moving Average, ARIMA)模型。白丽[2]利用 ARIMA模型分析地铁站常态的日客流量,并针对客流特殊因素提出时间序列及回归分析的组合模型。统计算法模型有严格的推导过程和理论支持,但模型对实际问题的假设和简化严重限制了它们的准确性。随着信息科学的快速发展,机器学习模型被广泛应用于交通流预测领域。它对非线性和复杂关系的建模更加灵活,能有效利用从前端感知设备获得的数据。韩磊和黄益绍[3]提出基于改进粒子群算法优化的极限学习机(IPSO-ELM)模型。赵丽琴[4]建立混合核的支持向量机模型,并基于粒子群优化算法对参数进行寻优。上述模型主要基于客流数据时间维度特征的分析进行预测,未能考虑地铁网络结构对客流的影响,难以捕捉到交通流数据的复杂时空特征。深度神经网络作为最先进的机器学习技术之一,在众多领域展现出了其强大的学习能力。许多研究结合不同的深度神经网络模型,共同学习交通流数据的时空特征。它对非线性和复杂关系的建模更加灵活,能有效利用从前端感知设备获得的数据。韩磊和黄益绍[3]提出基于改进粒子群算法优化的极限学习机(IPSO-ELM)模型。赵丽琴[4]建立混合核的支持向量机模型,并基于粒子群优化算法对参数进行寻优。上述模型主要基于客流数据时间维度特征的分析进行预测,未能考虑地铁网络结构对客流的影响,难以捕捉到交通流数据的复杂时空特征。深度神经网络作为最先进的机器学习技术之一,在众多领域展现出了其强大的学习能力。许多研究结合不同的深度神经网络模型,共同学习交通流数据的时空特征。

3.本课题的研究内容及技术路线

3.1设计内容

本课题将使用pycharm软件以某地铁站系统的用户客流量数据为基础,补充研究当日包含的天气因素等数据,完成基于地铁出行平常日(不包含节假日)客流量数据的训练,实现对地铁站点的客流进行分析和预测。其中运用到python自带的开源科学计算库numpy,pandas;2D绘图库Matplotlib和seaborn;sklearn基于python语言的机器学习工具;还运用到了LSTM(长短期记忆人工神经网络)技术。

3.2拟解决的主要问题问题在哪?

       本课题基于pycharm软件搭建仿真平台。

(1)数据分析与特征构建。明确不同车站因地理位置差异导致其特点和功能不同,分析地铁短时客流量中存在的周期性与非线性规律,寻求影响不同车站客流的主要因素并进行特征构建。

(2)建立短期客流预测模型。构建LSTM模型并合理调参,检验所构建模型在地铁短时客流量预测问题中可行性,总结不同模型在客流预测中的优点及不足。

(3)建立组合模型组合模型。基于LSTM模型的特点,建立ARIMA-LSTM和LGB-LSTM组合模型,比较分析不同模型在短时间客流预测问题中的精确与误差,检验实际应用的可行性,找出最优组合模型。

3.3研究方法

阅读相关文献,运用下行同步技术相关的知识,应用相关的技术,使其融入到本课题中,在已有的模型基础上不断完善本课题中重建模型的开发。积极与导师交流实验过程中遇到的问题,及时更正实验中不恰当的内容或方法。

3.4技术路线

  1. 导入项目所需要的库。
  2. 对数据文件进行读取和处理。数据预处理是建立模型前的重要一环。要使算法有效,必须为其提供干净、准确、简洁的数据。然而,实际应用中收集的数据通常带有错误。如果没有正确处理缺失值,可能最后得出不准确的数据推断。
  3. 对客流量空间规律特征进行分析。地铁客流变化规律不仅与时间规律有关,同时具有明显的空间分布特征,不同站点不同时间段内的进出站客流量与其周边地区具有较强相关性。为了更好对站点进行分类,排除个别影响因素。得到客流历史数据后,分别使用主成分分析法(PCA)和K 均值聚类法(K-means)进行数据降维及分类。
  4. 构建LSTM模型,流程如下:1.获取实验数据,将其划分为训练集与测试集;2.建立 LSTM 模型,将特征输入到 LSTM 模型中;3.设置迭代次数与学习率等参数,开始训练;4.训练结束,记录预测效果,并调整参数;5.重复 3、4 步直到预测效果最优,保存最优模型。6.将特征输入到最优模型,记录预测结果,并进行 MAPE 与 RMSE 分析。
  5. 组合模型的建立和分析。LSTM模型在地铁短时客流量预测中的优势与不足,利用LSTM善于处理时间序列的特点分别与善于提取数据周期性和线性特征的ARMA 模型、对峰值具有较强泛化能力的 LightGBM 模型进行合理组合,在已有模型基础上改进优化,以求获得相较于单一模型而言更好的性能与预测精度。通过对比分析不同预测模型,检验 ARIMA-LSTM 模型与 LGB-LSTM 模型在实际地铁客流预测中的可行性,寻找最佳模型结构。
  6. 对比分析。通过ARIMA-LSTM 与 LGB-LSTM 模型的建立过程与结果分析,得出了ARIMA-LSTM 与 LGB-LSTM 模型比单一模型更适用于日常生活中地铁客流量预测。

4. 预期研究成果

独立撰写一篇题为《轨道交通智慧客流分析预测》的8000字以上的本科毕业论文。

5. 进度安排

1、2023年2月25日至2021年2月28日 选定论文题目—客流预测

2、2023年3月1日至2022年3月3日 阅读和收集相关参考资料,撰写开题报告

3、2023年3月4日至2023年3月31日 继续阅读和收集相关参考资料,并做好课题的需求分析,系统的结构和功能模块设计,编码实现并调试代码。

4、2023年4月1日至2023年4月15日 展开研究,编码实现并调试代码,形成论文提纲,完成系统框架

5、2023年4月16日至2023年4月23日 编码实现并调试代码,完成论文初稿

6、2023年4月24日至2023年4月30日 系统调试并撰写第二稿论文。

7、2023年5月1日至2023年5月20日 论文定稿打印并交指导教授评阅。

6. 参考文献

[1] 杨信丰,刘兰芬.基于 AP 聚类的支持向量机公交站点短时客流预测[J],武汉理工大学学报(交通科学与工程版),2016,40(01):36-40.

[2] 王臻,张兴强。基于 ARIMA-FNN 的道路交通事故最优加权组合预测模型[J].交通信息与安全,2010,28(03):89-92.

[3] 李洪嘉,姚红光,李思睿,等.基于灰色-神经网络的虹桥综合交通枢纽客流预测[J].科学技术创新,2020(36):121-122.

[4] 潘亮.基于 EEMD-GSVM 的高速铁路短期客流预测[D].北京交通大学,2012.

[5]Jeng-Min Chiou. Dynamic functional prediction and classification, with application totraffic flow prediction[J]. The Annals of Applied Statistics, 2012, 6(4).

[6]Gurusamy Rajalakshmi,Seenivasan Siva Ranjani. DGSLSTM: Deep Gated StackedLong Short-Term Memory Neural Network for Traffic Flow Forecasting ofTransportation Networks on Big Data Environment[J]. Big data, 2022.

[7]汪祖丞,刘玲.旅游客流预测模型的比较及其实证研究——以黄山风景区为例
[J.安徽师范大学学报(自然科学版),2010,33(03): 286-290.

[8]Keemin Sohn,Hyunjin Shim. Factors generating boardings at Metro stations in the
Seoul metropolitan area[J]. Cities, 2010, 27(5).

[9] 丁世超。天气因素对高铁客流的影响研究[D].北京交通大学,2019.

[10] 陈宽民,余丽洁,马超群.西安市城市轨道交通车站高峰时段偏差研究[J].城市交通,2018,16(05): 51-58.

[11]Wang Xuemei,Zhang Ning,Zhang Yunlong,et al. Forecasting of Short-Term Metro
Ridership with Support Vector Machine Online Model[J]. Journal of Advanced
Transportation, 2018, 2018.

[12]迈向高质量发展:基于“七普”数据考察我国人口城镇化新阶段[J]. 程梦瑶.  人口与发展. 2022(02)

[13]城市轨道交通短期客流预测研究进展[J]. 雷斌,张源,郝亚睿,景立竹.  长安大学学报(自然科学版). 2022(01)

[14]基于大数据的城市轨道交通研究进展[J]. 胡嘉懿,陈珈琪.  城市建筑. 2021(34)

[15]城市轨道交通进出站短时客流预测模型研究[J]. 蔡昌俊.  城市轨道交通研究. 2021(09)

[16]卷积神经网络及其在智能交通系统中的应用综述[J]. 马永杰,程时升,马芸婷,马义德.  交通运输工程学报. 2021(04)

[17]《城市轨道交通2020年度统计和分析报告》发布[J].   隧道建设(中英文). 2021(04)

[18]基于ARIMA模型的城市轨道交通客流预测及研究[J]. 倪杰,于莉,靳笑楠.  智能计算机与应用. 2021(04)

[19]基于深度学习模型的城市轨道交通短时客流预测方法研究[D]. 王佳琳.北京交通大学 2020

[20]基于CNN-LSTM组合模型的城市轨道交通短时客流预测研究[D]. 冯碧玉.华东交通大学 2020

[21]基于深度神经网络的地铁客流预测系统研究[D]. 张琳.北京交通大学 2019

[22]基于深度学习的短时公交客流预测研究[D]. 李梅.北京交通大学 2019

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程指南针

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值