9、无线信号多径传播与信道特性解析

无线信号多径传播与信道特性解析

在无线通信领域,信号的传播往往会受到多种因素的影响,多径传播就是其中一个重要的现象。了解多径传播机制以及相关的信道特性,对于优化无线通信系统的性能至关重要。

1. 多径传播机制

多径传播是指无线信号在传播过程中,由于遇到各种反射、折射、散射和衍射物体,从而产生多条传播路径的现象。在典型的多径场景中,大量反射、折射、散射和衍射物体的分布是随机的,因此难以用确定性模型来描述信道,通常需要采用统计模型来估计信号和信道的行为。

多径传播主要有以下几种机制:
- 散射 :当电磁信号遇到比波长小得多的物体时,就会发生散射。例如,水滴、云层或昆虫等都可能导致散射。在电磁学领域,这种散射机制通常被称为瑞利散射。需要注意的是,瑞利散射与瑞利衰落虽然相互关联,但并不是同一概念。
- 折射 :当电磁信号在不同介质中传播时,由于介质的电学性质不同,传播路径会发生改变,这种现象称为折射。边界条件会影响折射的程度。
- 反射 :当电磁信号以一定角度撞击光滑表面时,会被反射向接收器。在正常情况下,反射角等于入射角。
- 衍射 :当电磁信号撞击到相对于波长较大的物体的边缘或角落时,会发生衍射。入射光线会根据凯勒衍射定律在一个锥形区域内发生衍射。

这些机制会产生多条传播路径,使得接收到的信号是多个不同相位、幅度和时间延迟的信号副本的叠加。因此,多径信号的幅度、相位和时间延迟都成为了随机变量。

2. 传播信道基础

为了更好地理解无线

基于向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路规划等个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值