20、Perl核心增强特性深度解析

Perl核心增强特性深度解析

1. 解释器克隆、线程与并发

Perl 5.6.0 开始支持在不同线程中并发运行多个解释器。结合 perl_clone() API 调用(可用于有选择地复制任何给定解释器的状态),可以在一个解释器中编译一次代码,克隆该解释器一次或多次,并在不同线程中运行所有生成的解释器。

在 Windows 平台上,此功能用于在解释器级别模拟 fork()

此功能仍在发展中,最终旨在有选择地克隆一个子例程及其可访问的数据到一个单独的解释器中,并在一个单独的线程中运行克隆的子例程。由于解释器之间没有共享数据,因此几乎不需要或不需要锁定(除非显式共享符号表的某些部分),这显然旨在成为现有线程支持的易用替代品。

启用解释器克隆和解释器并发支持的操作步骤如下:
- 使用 -Dusethreads 配置选项(在 Windows 上启用方法见 win32/Makefile )。生成的 Perl 可执行文件在功能上与使用 -Dmultiplicity 构建的文件相同,但 perl_clone() API 调用仅在前者中可用。
- -Dusethreads 默认启用 cpp USE_ITHREADS ,这反过来又会启用 Perl 源代码更改,从而在操作树和它操作的数据之间提供清晰的分离。操作树是不可变的,因此可以在解释器及其所有克隆之间共享,而数据被认为是每个解释器本地

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值