题目描述
小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述:
- 农场a比农场b至少多种植了c个单位的作物,
- 农场a比农场b至多多种植了c个单位的作物,
- 农场a与农场b种植的作物数一样多。
但是,由于小K的记忆有些偏差,所以他想要知道存不存在一种情况,使得农场的种植作物数量与他记忆中的所有信息吻合。
输入输出格式
输入格式:
第一行包括两个整数 n 和 m,分别表示农场数目和小 K 记忆中的信息数目。
接下来 m 行:
如果每行的第一个数是 1,接下来有 3 个整数 a,b,c,表示农场 a 比农场 b 至少多种植了 c 个单位的作物。
如果每行的第一个数是 2,接下来有 3 个整数 a,b,c,表示农场 a 比农场 b 至多多种植了 c 个单位的作物。如果每行的第一个数是 3,接下来有 2 个整数 a,b,表示农场 a 种植的的数量和 b 一样多。
输出格式:
如果存在某种情况与小 K 的记忆吻合,输出“Yes”,否则输出“No”。
输入输出样例
输入样例#1: 复制
3 3
3 1 2
1 1 3 1
2 2 3 2
输出样例#1: 复制
Yes
说明
对于 100% 的数据保证:1 ≤ n,m,a,b,c ≤ 10000。
解题思路
利用差分约束建图,用一个超级源点0连接所有的节点,保证图的连通性。然后用spfa判环,用dfs模拟spfa,不然会超时。
代码如下
#include <iostream>
#include <vector>
#include <cstring>
#include <cstdio>
#include <queue>
#define maxn 10005
#define INF 0x3f3f3f3f
using namespace std;
struct line{
int r, w;
line(int r, int w): r(r), w(w){ }
};
vector<line> g[maxn];
bool vis[maxn];
int dis[maxn];
bool spfa(int x)
{
vis[x] = true;
for(int i = 0; i < g[x].size(); i ++){
int r = g[x][i].r;
int w = g[x][i].w;
if(dis[x] + w < dis[r]){ //通过这条路使到r的最小路径更新了
dis[r] = dis[x] + w;
if(vis[r]) //从同一条路径下来回到r点,说明有环
return false; //且回到此点的路径长度减小了,多转几圈可以无限减小,所以是负环
if(!spfa(r))
return false;
}
}
vis[x] = false; //回溯
return true;
}
int main()
{
int n, m;
while(cin >> n >> m){
for(int i = 1; i <= n; i ++) //让0连接所有节点
g[0].push_back(line(i, 0));
for(int i = 0; i < m; i ++){ //利用差分约束建图
int ins, a, b;
scanf("%d%d%d", &ins, &a, &b);
if(ins == 2){
int c;
scanf("%d", &c);
g[b].push_back(line(a, c));
}
else if(ins == 1){
int c;
scanf("%d", &c);
g[a].push_back(line(b, -c));
}
else {
g[a].push_back(line(b, 0));
g[b].push_back(line(a, 0));
}
}
memset(vis, 0, sizeof(vis));
memset(dis, 0x7f, sizeof(dis));
dis[0] = 0;
if(spfa(0)) //没有负环
cout << "Yes" << endl;
else
cout << "No" << endl;
}
return 0;
}