洛谷 P1993 小K的农场(差分约束)

23 篇文章 1 订阅

题目描述

小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述:

  • 农场a比农场b至少多种植了c个单位的作物,
  • 农场a比农场b至多多种植了c个单位的作物,
  • 农场a与农场b种植的作物数一样多。

但是,由于小K的记忆有些偏差,所以他想要知道存不存在一种情况,使得农场的种植作物数量与他记忆中的所有信息吻合。

输入输出格式

输入格式:

 

第一行包括两个整数 n 和 m,分别表示农场数目和小 K 记忆中的信息数目。

接下来 m 行:

如果每行的第一个数是 1,接下来有 3 个整数 a,b,c,表示农场 a 比农场 b 至少多种植了 c 个单位的作物。

如果每行的第一个数是 2,接下来有 3 个整数 a,b,c,表示农场 a 比农场 b 至多多种植了 c 个单位的作物。如果每行的第一个数是 3,接下来有 2 个整数 a,b,表示农场 a 种植的的数量和 b 一样多。

 

输出格式:

 

如果存在某种情况与小 K 的记忆吻合,输出“Yes”,否则输出“No”。

 

输入输出样例

输入样例#1: 复制

3 3
3 1 2
1 1 3 1
2 2 3 2

输出样例#1: 复制

Yes

说明

对于 100% 的数据保证:1 ≤ n,m,a,b,c ≤ 10000。

解题思路

利用差分约束建图,用一个超级源点0连接所有的节点,保证图的连通性。然后用spfa判环,用dfs模拟spfa,不然会超时。

代码如下

#include <iostream>
#include <vector>
#include <cstring>
#include <cstdio>
#include <queue>
#define maxn 10005
#define INF 0x3f3f3f3f
using namespace std;
struct line{
	int r, w;
	line(int r, int w): r(r), w(w){	}
};
vector<line> g[maxn];
bool vis[maxn];
int dis[maxn];
bool spfa(int x)
{
	vis[x] = true;
	for(int i = 0; i < g[x].size(); i ++){
		int r = g[x][i].r;
		int w = g[x][i].w;
		if(dis[x] + w < dis[r]){   //通过这条路使到r的最小路径更新了 
			dis[r] = dis[x] + w;
			if(vis[r])             //从同一条路径下来回到r点,说明有环 
				return false;      //且回到此点的路径长度减小了,多转几圈可以无限减小,所以是负环 
			if(!spfa(r))
				return false;
			
		}
	}
	vis[x] = false;   //回溯 
	return true;    
}
int main()
{
	int n, m;
	while(cin >> n >> m){
		for(int i = 1; i <= n; i ++)   //让0连接所有节点 
			g[0].push_back(line(i, 0));
		for(int i = 0; i < m; i ++){    //利用差分约束建图 
			int ins, a, b;
			scanf("%d%d%d", &ins, &a, &b);
			if(ins == 2){
				int c;
				scanf("%d", &c);
				g[b].push_back(line(a, c));
			}
			else if(ins == 1){
				int c;
				scanf("%d", &c);
				g[a].push_back(line(b, -c));
			}
			else {
				g[a].push_back(line(b, 0));
				g[b].push_back(line(a, 0));
			}
		}
		memset(vis, 0, sizeof(vis));
		memset(dis, 0x7f, sizeof(dis));
		dis[0] = 0;
		if(spfa(0))   //没有负环 
			cout << "Yes" << endl;
		else 
			cout << "No" << endl;
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值