Spring AI 整体介绍_关键组件快速入门_prompt_embedding等

Spring AI:Java开发者的AI集成新利器

在过去,Java开发者在构建AI应用时面临着缺乏统一框架的问题,导致不同AI服务的集成过程复杂且耗时。Spring AI应运而生,旨在为基于Java的应用程序提供一个标准化、高效且易于使用的AI开发平台。它继承了Spring生态系统的设计原则,如可移植性和模块化,使得开发者能够利用熟悉的POJOs(Plain Old Java Objects)来快速搭建智能应用。通过Spring AI,开发者只需编写一次代码,就能轻松切换不同的AI服务提供商,极大简化了项目迁移和技术栈升级的过程。此外,Spring AI还提供了对多种生成式AI模型的支持,包括文本生成、图像处理等,并引入了诸如Prompt Template等功能以增强人机交互体验,完美融合了现代AI技术与传统的Java面向对象编程范式。

Spring AI核心能力概览

Spring AI 拥有以下主要能力,这些能力旨在简化AI应用的开发过程,并确保开发者能够高效地利用不同AI服务和模型。

关键概念一句话介绍:

模型(Model)

一句话说明:支持多种生成式模型的接入与切换。

  • 输入:用户提供的文本、图片或语音等数据。

  • 输出:基于所选模型生成的对应类型的数据,如对话回复、图片或语音文件。

  • 关键要素:支持阿里云通义系列模型,包括但不限于对话、文生图、文生语音等。

提示(Prompt)与提示词模板(Prompt Template)

一句话说明:通过预定义的模板生成特定格式的提示,以指导模型产生期望的结果。

  • 输入:动态参数值。

  • 输出:根据模板生成的具体提示字符串。

  • 关键要素:使用@Value加载模板文件,并通过PromptTemplate.create()方法结合实际参数生成最终的提示。

嵌入(Embedding)

一句话说明ÿ

<think>好的,我现在需要帮助用户解决在Spring AI RAG中如何对接多张表格数据的问题。用户还希望得到示例教程。首先,我需要回忆一下Spring AI的相关知识,尤其是RAG的实现方法。 根据用户提供的引用内容,特别是引用[2]和[3],Spring AI框架支持RAG技术,通过向量数据库存储外部数据,并在生成回答时检索相关文档。但用户的问题是关于多表联接的,这可能需要将多个表的数据整合到向量数据库中。 首先,我需要确定如何在Spring AI中处理多表数据。通常,处理多表可能需要将不同表的数据进行关联,然后转换为统一的文本格式,再向量化存储。例如,将多个表通过某种键(如用户ID)连接,生成包含所有相关信息的文档。 接下来,步骤可能包括数据预处理、建立关联、向量化存储,然后在检索时处理多表查询。用户可能需要示例代码,特别是如何配置Spring AI来整合多表数据。比如,在数据加载阶段,可能需要从不同表中提取数据,合并成文档,再存入向量数据库。 此外,引用[3]提到QuestionAnswerAdvisor会查询向量数据库中的相关文档,所以需要确保多表数据被正确索引,以便检索时能关联到用户的问题。可能需要使用SQL联接查询或者在应用层处理数据关联。 还需要考虑如何将多表结构映射到向量数据库的文档结构。例如,每个文档可能包含来自多个表的字段,或者将每个表的数据单独存储,但在检索时合并上下文。 可能遇到的问题包括数据同步、关联键的选择以及查询效率。需要建议用户进行数据预处理,确保关联正确,并在检索时优化查询逻辑。 最后,示例教程部分应该展示如何从多个表中提取数据,处理成文档,配置Spring AIEmbedding和VectorStore,并实现检索逻辑。代码示例可能包括数据加载、处理、存储和查询的步骤,使用Spring AI的注解和API。</think>在Spring AI RAG中实现多表数据对接的核心思路是通过数据预处理将多表关联信息整合为结构化文档,再通过向量化存储实现联合检索。以下是具体实现步骤和示例: ### 一、多表数据处理阶段 1. **建立表关联逻辑** ```sql -- 示例表结构 CREATE TABLE users ( user_id INT PRIMARY KEY, name VARCHAR(50) ); CREATE TABLE orders ( order_id INT PRIMARY KEY, user_id INT, product VARCHAR(50), FOREIGN KEY (user_id) REFERENCES users(user_id) ); ``` 2. **使用JdbcTemplate进行联合查询** ```java public List<Document> loadJoinedData() { String sql = "SELECT u.user_id, u.name, o.product " + "FROM users u JOIN orders o ON u.user_id = o.user_id"; return jdbcTemplate.query(sql, (rs, rowNum) -> { String content = String.format("用户%s(ID:%d)购买了%s", rs.getString("name"), rs.getInt("user_id"), rs.getString("product")); return new Document(content, Map.of( "user_id", rs.getInt("user_id"), "source", "multi-table" )); }); } ``` ### 二、向量化存储配置 ```java @Bean public VectorStore vectorStore(EmbeddingClient embeddingClient) { return new SimpleVectorStore(embeddingClient); } @Bean public EmbeddingClient embeddingClient() { return new OpenAiEmbeddingClient(apiKey); } ``` ### 三、增强检索实现 ```java @RestController public class MultiTableRAGController { @Autowired private VectorStore vectorStore; @PostMapping("/ask") public String askQuestion(@RequestBody String question) { List<Document> results = vectorStore.similaritySearch( SearchRequest.query(question).withTopK(5)); String context = results.stream() .map(Document::getContent) .collect(Collectors.joining("\n")); String prompt = String.format("基于以下用户和订单信息:\n%s\n回答问题:%s", context, question); return aiClient.generate(prompt); } } ``` ### 四、多表关联优化策略 1. **动态上下文注入**:在文档metadata中存储表来源信息,检索时自动附加表结构说明 2. **关联权重控制**:通过`withFilterExpression`实现跨表权重调节 ```java vectorStore.similaritySearch( SearchRequest.query(question) .withFilterExpression("source IN ('users','orders')") .withWeights(Map.of("users",0.6, "orders",0.4)) ); ``` 3. **增量更新机制**:使用`@Scheduled`注解实现定时同步 ```java @Scheduled(fixedDelay = 3600000) public void syncVectorStore() { vectorStore.addDocuments(loadJoinedData()); } ``` ### 五、典型应用场景 1. 跨表客户画像分析(用户表+行为表+订单表) 2. 库存-销售关联查询 3. 医疗记录多科室数据联合检索[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值