题目描述
最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间。Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长。 现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间。 具体地说,就是要求无向图中,两对点间最短路的最长公共路径。
输入输出格式
输入格式:
第一行:两个整数N和M(含义如题目描述)。 第二行:四个整数x1、y1、x2、y2(1 ≤ x1 ≤ N,1 ≤ y1 ≤ N,1 ≤ x2 ≤ N,1 ≤ ≤ N),分别表示Elaxia的宿舍和实验室及w**的宿舍和实验室的标号(两对点分别 x1,y1和x2,y2)。 接下来M行:每行三个整数,u、v、l(1 ≤ u ≤ N,1 ≤ v ≤ N,1 ≤ l ≤ 10000),表 u和v之间有一条路,经过这条路所需要的时间为l。
输出格式:
一行,一个整数,表示每天两人在一起的时间(即最长公共路径的长度)
输入输出样例
9 10
1 6 7 8
1 2 1
2 5 2
2 3 3
3 4 2
3 9 5
4 5 3
4 6 4
4 7 2
5 8 1
7 9 1
3
说明
对于30%的数据,N <= 100;
对于60%的数据,N <= 1000;
对于100%的数据,N <= 1500,输入数据保证没有重边和自环。
从 四个点 分别跑一次SPFA 记录dis值
然后找出重复路径 跑Topo 排序 找重复路径的最大值
不过由于路径的方向问题 有可能有重复的路径无法被记录
只需要把 x2 y2 倒过来跑一遍就好了
1 #include <queue> 2 #include <cstdio> 3 #include <cctype> 4 #include <vector> 5 6 const int MAXN=2010; 7 const int INF=0x7fffffff; 8 9 int n,m,x1,y1,x2,y2,ans; 10 11 int dis[6][MAXN],num[MAXN],in[MAXN],q[MAXN*1000]; 12 13 bool vis[MAXN]; 14 15 inline void read(int&x) { 16 int f=1;register char c=getchar(); 17 for(x=0;!isdigit(c);c=='-'&&(f=-1),c=getchar()); 18 for(;isdigit(c);x=x*10+c-48,c=getchar()); 19 x=x*f; 20 } 21 22 struct node { 23 int to,val; 24 node() {} 25 node(int to,int val):to(to),val(val) {} 26 }; 27 28 std::vector<node> Graph[MAXN],New[MAXN]; 29 30 void SPFA(int S,int flag) { 31 for(register int i=1;i<=n;++i) dis[flag][i]=INF,vis[i]=false; 32 dis[flag][S]=0; 33 std::queue<int> Q; 34 Q.push(S); 35 while(!Q.empty()) { 36 int u=Q.front(); 37 Q.pop(); 38 vis[u]=false; 39 for(register int i=0;i<Graph[u].size();++i) { 40 node p=Graph[u][i]; 41 if(dis[flag][p.to]>dis[flag][u]+p.val) { 42 dis[flag][p.to]=dis[flag][u]+p.val; 43 if(!vis[p.to]) Q.push(p.to),vis[p.to]=true; 44 } 45 } 46 } 47 } 48 49 void topo() { 50 int head=0,tail=0; 51 for(int i=1;i<=n;++i) { 52 if(!in[i]) q[++tail]=i; 53 dis[5][i]=0; 54 } 55 while(head<tail) { 56 int u=q[++head]; 57 for(int i=0;i<New[u].size();++i) { 58 node v=New[u][i]; 59 dis[5][v.to]=dis[5][u]+v.val; 60 if(!--in[v.to]) q[++tail]=v.to; 61 } 62 } 63 for(int i=1;i<=n;++i) 64 ans=ans<dis[5][i]?dis[5][i]:ans; 65 return; 66 } 67 68 int hh() { 69 read(n);read(m); 70 read(x1);read(y1);read(x2);read(y2); 71 for(register int x,y,z,i=1;i<=m;++i) { 72 read(x);read(y);read(z); 73 Graph[x].push_back(node(y,z)); 74 Graph[y].push_back(node(x,z)); 75 } 76 SPFA(x1,1); 77 SPFA(x2,2); 78 SPFA(y1,3); 79 SPFA(y2,4); 80 for(int i=1;i<=n;++i) 81 for(int j=0;j<Graph[i].size();++j) { 82 node v=Graph[i][j]; 83 if(dis[1][i]+dis[3][v.to]+v.val==dis[1][y1]&&dis[2][i]+dis[4][v.to]+v.val==dis[2][y2]) 84 New[i].push_back(node(v.to,v.val)),++in[v.to]; 85 } 86 topo(); 87 SPFA(y2,2);SPFA(x2,4); 88 for(int i=1;i<=n;++i) New[i].clear(),in[i]=0; 89 for(int i=1;i<=n;++i) 90 for(int j=0;j<Graph[i].size();++j) { 91 node v=Graph[i][j]; 92 if(dis[1][i]+dis[3][v.to]+v.val==dis[1][y1]&&dis[2][i]+dis[4][v.to]+v.val==dis[2][x2]) 93 New[i].push_back(node(v.to,v.val)),++in[v.to]; 94 } 95 topo(); 96 printf("%d\n",ans); 97 return 0; 98 } 99 100 int sb=hh(); 101 int main(int argc,char**argv) {;}