P3384 【模板】树链剖分

P3384 【模板】树链剖分

题目描述

如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作:

操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z

操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和

操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z

操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和

输入输出格式

输入格式:

 

第一行包含4个正整数N、M、R、P,分别表示树的结点个数、操作个数、根节点序号和取模数(即所有的输出结果均对此取模)。

接下来一行包含N个非负整数,分别依次表示各个节点上初始的数值。

接下来N-1行每行包含两个整数x、y,表示点x和点y之间连有一条边(保证无环且连通)

接下来M行每行包含若干个正整数,每行表示一个操作,格式如下:

操作1: 1 x y z

操作2: 2 x y

操作3: 3 x z

操作4: 4 x

 

输出格式:

 

输出包含若干行,分别依次表示每个操作2或操作4所得的结果(对P取模)

 

输入输出样例

输入样例#1:
5 5 2 24
7 3 7 8 0 
1 2
1 5
3 1
4 1
3 4 2
3 2 2
4 5
1 5 1 3
2 1 3
输出样例#1:
2
21

说明

时空限制:1s,128M

数据规模:

对于30%的数据: N10,M10

对于70%的数据:N10​^3​​,M10^3​​

对于100%的数据: N10​^5​​,M10^5​​

( 其实,纯随机生成的树LCA+暴力是能过的,可是,你觉得可能是纯随机的么233 )

样例说明:

树的结构如下:

各个操作如下:

 

 

故输出应依次为2、21(重要的事情说三遍:记得取模)

模板般而已

  1 #include <vector>
  2 #include <cstdio>
  3 #include <cctype>
  4 
  5 const int MAXN=100010;
  6 
  7 int n,m,r,p,inr;
  8 
  9 int a[MAXN],son[MAXN],id[MAXN],fa[MAXN],top[MAXN],dep[MAXN],siz[MAXN],rank[MAXN];
 10 
 11 std::vector<int> Graph[MAXN];
 12 
 13 inline void read(int&x) {
 14     int f=1;register char c=getchar();
 15     for(x=0;!isdigit(c);c=='-'&&(f=-1),c=getchar());
 16     for(;isdigit(c);x=x*10+c-48,c=getchar());
 17     x=x*f;
 18 }
 19 
 20 struct node {
 21     int l,r;
 22     int sum,tag;
 23 };
 24 node t[MAXN<<2];
 25 
 26 void DFS_1(int u,int f) {
 27     dep[u]=dep[f]+1;
 28     siz[u]=1;
 29     fa[u]=f;
 30     for(int i=0;i<Graph[u].size();++i) {
 31         int v=Graph[u][i];
 32         if(v==f) continue;
 33         DFS_1(v,u);
 34         siz[u]+=siz[v];
 35         if(siz[son[u]]<siz[v]) son[u]=v;
 36     }
 37 }
 38 
 39 void DFS_2(int u,int tp) {
 40     id[u]=++inr;
 41     rank[inr]=a[u];
 42     top[u]=tp;
 43     if(son[u]==-1) return;
 44     if(son[u]) DFS_2(son[u],tp);
 45     for(int i=0;i<Graph[u].size();++i) {
 46         int v=Graph[u][i];
 47         if(v==son[u]||v==fa[u]) continue;
 48         DFS_2(v,v);
 49     }
 50 }
 51 
 52 void build_tree(int now,int l,int r) {
 53     t[now].l=l;t[now].r=r;
 54     if(l==r) {
 55         t[now].sum=rank[l];
 56         t[now].tag=0;
 57         return;
 58     }
 59     int mid=(l+r)>>1;
 60     build_tree(now<<1,l,mid);
 61     build_tree(now<<1|1,mid+1,r);
 62     t[now].sum=(t[now<<1].sum+t[now<<1|1].sum)%p;
 63 }
 64 
 65 void down(int now) {
 66     t[now<<1].tag+=t[now].tag;
 67     t[now<<1|1].tag+=t[now].tag;
 68     t[now<<1].sum=(t[now<<1].sum+(t[now<<1].r-t[now<<1].l+1)*t[now].tag)%p;
 69     t[now<<1|1].sum=(t[now<<1|1].sum+(t[now<<1|1].r-t[now<<1|1].l+1)*t[now].tag)%p;
 70     t[now].tag=0;
 71 }
 72 
 73 void modify(int now,int l,int r,int v) {
 74     if(l<=t[now].l&&r>=t[now].r) {
 75         t[now].sum+=(t[now].r-t[now].l+1)*v%p;
 76         t[now].tag+=v;
 77         return;
 78     }
 79     if(t[now].tag) down(now);
 80     int mid=(t[now].l+t[now].r)>>1;
 81     if(l<=mid) modify(now<<1,l,r,v);
 82     if(r>mid) modify(now<<1|1,l,r,v);
 83     t[now].sum=(t[now<<1].sum+t[now<<1|1].sum)%p;
 84 }
 85 
 86 int query(int now,int l,int r) {
 87     int ans=0;
 88     if(l<=t[now].l&&r>=t[now].r) return t[now].sum%p;
 89     if(t[now].tag) down(now);
 90     int mid=(t[now].l+t[now].r)>>1;
 91     if(l<=mid) ans=(ans+query(now<<1,l,r))%p;
 92     if(r>mid) ans=(ans+query(now<<1|1,l,r))%p;
 93     return ans;
 94 }
 95 
 96 int Pre(int x,int y,int z) {
 97     int ans=0;
 98     while(top[x]!=top[y]) {
 99         if(dep[top[x]]<dep[top[y]]) x^=y^=x^=y;
100         if(z) modify(1,id[top[x]],id[x],z);
101         else ans=(ans+query(1,id[top[x]],id[x]))%p;
102         x=fa[top[x]];
103     }
104     if(dep[x]>dep[y]) x^=y^=x^=y;
105     if(z) modify(1,id[x],id[y],z);
106     else ans=(ans+query(1,id[x],id[y]))%p;
107     if(!z) return ans;
108 }
109 
110 int hh() {
111     read(n);read(m);read(r);read(p);
112     for(int i=1;i<=n;++i) read(a[i]),son[i]=-1;
113     for(int x,y,i=1;i<n;++i) {
114         read(x);read(y);
115         Graph[x].push_back(y);
116         Graph[y].push_back(x);
117     }
118     DFS_1(r,0);DFS_2(r,r);
119     build_tree(1,1,inr);
120     for(int flag,x,y,z,i=1;i<=m;++i) {
121         read(flag);read(x);
122         if(flag==1) {
123             read(y);read(z);
124             Pre(x,y,z);
125         }
126         else if(flag==2) {
127             read(y);
128             int ans=Pre(x,y,0);
129             printf("%d\n",ans);
130         }
131         else if(flag==3) {
132             read(z);
133             modify(1,id[x],siz[x]+id[x]-1,z);
134         }
135         else {
136             int ans=query(1,id[x],siz[x]+id[x]-1);
137             printf("%d\n",ans);
138         }
139     }
140     return 0;
141 } 
142 
143 int sb=hh();
144 int main(int argc,char**argv) {;}
题解

 

#include <cstdio> #include <iostream> #include <vector> #define N 30003 #define INF 2147483647 using namespace std; int n,f[N][20],dep[N],siz[N],son[N],top[N],tot,pos[N],w[N]; int Max[N*4],Sum[N*4]; vector <int> to[N]; void dfs1(int x){ siz[x]=1; int sz=to[x].size(); for(int i=0;i<sz;++i){ int y=to[x][i]; if(y==f[x][0])continue; f[y][0]=x; dep[y]=dep[x]+1; dfs1(y); siz[x]+=siz[y]; if(siz[y]>siz[son[x]])son[x]=y; } } void dfs2(int x,int root){ top[x]=root; pos[x]=++tot; if(son[x])dfs2(son[x],root); int sz=to[x].size(); for(int i=0;i<sz;++i){ int y=to[x][i]; if(y==f[x][0] || y==son[x])continue; dfs2(y,y); } } void update(int k,int l,int r,int P,int V){ if(l==r){ Max[k]=Sum[k]=V; return; } int mid=(l+r)>>1; if(P<=mid)update(k*2,l,mid,P,V); else update(k*2+1,mid+1,r,P,V); Max[k]=max(Max[k*2],Max[k*2+1]); Sum[k]=Sum[k*2]+Sum[k*2+1]; } void up(int &x,int goal){ for(int i=15;i>=0;--i) if(dep[f[x][i]]>=goal)x=f[x][i]; } int lca(int x,int y){ if(dep[x]>dep[y])up(x,dep[y]); if(dep[x]<dep[y])up(y,dep[x]); if(x==y)return x; for(int i=15;i>=0;--i) if(f[x][i]!=f[y][i])x=f[x][i],y=f[y][i]; return f[x][0]; } int getm(int k,int l,int r,int L,int R){ if(L<=l && r<=R)return Max[k]; int res=-INF,mid=(l+r)>>1; if(L<=mid)res=max(res,getm(k*2,l,mid,L,R)); if(R>mid)res=max(res,getm(k*2+1,mid+1,r,L,R)); return res; } int gets(int k,int l,int r,int L,int R){ if(L<=l && r<=R)return Sum[k]; int res=0,mid=(l+r)>>1; if(L<=mid)res+=gets(k*2,l,mid,L,R); if(R>mid)res+=gets(k*2+1,mid+1,r,L,R); return res; } int main(){ scanf("%d",&n); for(int i=1,a,b;i<n;++i){ scanf("%d%d",&a,&b); to[a].push_back(b); to[b].push_back(a); } dep[1]=1; dfs1(1); dfs2(1,1); for(int i=1;i<=15;++i) for(int j=1;j<=n;++j)f[j][i]=f[f[j][i-1]][i-1]; for(int i=1;i<=n;++i){ scanf("%d",&w[i]); update(1,1,n,pos[i],w[i]); } int q; scanf("%d",&q); while(q--){ char s[10]; int u,v,t; scanf("%s",s); if(s[1]=='H'){ scanf("%d%d",&u,&t); w[u]=t; update(1,1,n,pos[u],t); } if(s[1]=='M'){ scanf("%d%d",&u,&v); int ans=-INF,t=lca(u,v); for(int i=u;i;i=f[top[i]][0]) if(dep[t]<dep[top[i]]) ans=max(ans,getm(1,1,n,pos[top[i]],pos[i])); else{ ans=max(ans,getm(1,1,n,pos[t],pos[i])); break; } for(int i=v;i;i=f[top[i]][0]) if(dep[t]<dep[top[i]]) ans=max(ans,getm(1,1,n,pos[top[i]],pos[i])); else{ ans=max(ans,getm(1,1,n,pos[t],pos[i])); break; } printf("%d\n",ans); } if(s[1]=='S'){ scanf("%d%d",&u,&v); int ans=0,t=lca(u,v); for(int i=u;i;i=f[top[i]][0]) if(dep[t]<dep[top[i]]) ans+=gets(1,1,n,pos[top[i]],pos[i]); else{ ans+=gets(1,1,n,pos[t],pos[i]); break; } for(int i=v;i;i=f[top[i]][0]) if(dep[t]<dep[top[i]]) ans+=gets(1,1,n,pos[top[i]],pos[i]); else{ ans+=gets(1,1,n,pos[t],pos[i]); break; } printf("%d\n",ans-w[t]); } } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值