微分基础知识(一)

目录

可导与可微

复合函数的微分法则


可导与可微

  只需要记住可导\Leftrightarrow可微 。可导是可微的充要条件,可微必可导,可导必可微

  从这里还可以得到一条公式,其中Δx为x的微小增量。(求微分就是为了作近似计算)

 这里还能从可导和可微的关系推出下面这条公式,有了这条公式求微分就很简单了。(其实就是导数\frac{dy}{dx}=f{}'(x)这条变形来的。)

例题

求函数y=x^{3}在x=2,Δx=0.02时的微分。

1.先求y的导数y’:y{}'=3x^{2}

2.代入图一的公式:dy=12\times 0.02=0.24

复合函数的微分法则

  有了上面的公式求复合函数的微分其实会求导就很简单了。这里直接上例题。(微分公式啥的会求导公式就行,求导逆过程在最后加上dx就可以了)

例题

y=sin(2x+1),求dy

1.先求y的导数y’:y{}'=2cos(2x+1) (求导总不能忘吧)

2.最后加上dx就是答案了y{}'=2cos(2x+1)dx

 向括号中填入适当的函数,使d(\, )=cos \omega t\,dt(\omega \neq 0)成立;

 1.这块其实是后面不定积分的内容。其实就是求xxx的导数等于xxx。那这里就是xxx的导数等于cosxxx。那么可知括号里应该填sin\omega t,又因为sin\omega t 求导后等于\omega cos\omega t,观察等号右边的式子发现多了个\omega,那么可得(\frac{1}{\omega }\, sin\omega t){}'=cos\omega t。那么我们可以得到d(\frac{1}{\omega }\, sin\omega t)=cos\omega t\,dt (\frac{1}{\omega }是个常数,可以从d的外面提到d的里面,公式啥的看书就行)

2.又因为常数求导为0,那么无论常数是多少对式子求导的结果都没有影响。我们不知道式子有没有常数项,便在后面加上C来表示任意常数就是答案了. d(\frac{1}{\omega }\, sin\omega t+C)=cos\omega t\,dt

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值