目录
可导与可微
只需要记住可导可微 。可导是可微的充要条件,可微必可导,可导必可微。
从这里还可以得到一条公式,其中Δx为x的微小增量。(求微分就是为了作近似计算)
这里还能从可导和可微的关系推出下面这条公式,有了这条公式求微分就很简单了。(其实就是导数这条变形来的。)
例题
求函数在x=2,Δx=0.02时的微分。
1.先求y的导数y’:
2.代入图一的公式:
复合函数的微分法则
有了上面的公式求复合函数的微分其实会求导就很简单了。这里直接上例题。(微分公式啥的会求导公式就行,求导逆过程在最后加上dx就可以了)
例题
y=sin(2x+1),求dy
1.先求y的导数y’: (求导总不能忘吧)
2.最后加上dx就是答案了
向括号中填入适当的函数,使成立;
1.这块其实是后面不定积分的内容。其实就是求xxx的导数等于xxx。那这里就是xxx的导数等于cosxxx。那么可知括号里应该填,又因为
求导后等于
,观察等号右边的式子发现多了个
,那么可得
。那么我们可以得到
(
是个常数,可以从d的外面提到d的里面,公式啥的看书就行)
2.又因为常数求导为0,那么无论常数是多少对式子求导的结果都没有影响。我们不知道式子有没有常数项,便在后面加上C来表示任意常数就是答案了.