- 博客(41)
- 收藏
- 关注
原创 万字长文|大模型的“记忆体”是如何工作的?核心机制与研究前沿全解析
要让LLM朝着通用人工智能(AGI)的目标更进一步,研究人员开始尝试赋予LLM-Agent(基于LLM的自主智能体)以“记忆”模块,使其能够像智能体一样在环境中不断积累知识、反思经验,并在后续决策中调用过去的信息。
2025-08-20 14:06:25
1412
原创 想真正理解Transformer?这份数学视角的学习路线图请收好
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!点击领取:2025最新最全AI大模型资料包:学习路线+书籍+视频+实战+案例…
2025-08-19 10:45:18
1048
原创 一文搞懂大模型能做什么:核心技术能力与企业落地场景指南
作为相关领域从业者,也要了解AI大模型的核心能力和典型应用领域。结合IDC 2024研究报告的内容和大家简单聊聊!
2025-08-17 08:45:00
782
原创 一文讲透大模型PEFT技术:LoRA、Adapter、Prefix-Tuning原理与实战
Adapter Tuning如何实现?Adapter Tuning在预训练模型中插入设计的适配器模块,仅训练这些模块参数以微调模型,同时保持预训练模型参数不变,并在特定任务数据集上评估性能。
2025-08-16 11:35:23
1131
原创 让AI Agent记住关键信息:上下文工程的4大实用技巧
智能体(Agents)执行任务需要上下文。上下文工程是在智能体运行轨迹的每个步骤中,为其上下文窗口填充恰到好处信息的艺术与科学。在本文中,我们通过回顾各类热门智能体及相关论文,拆解了上下文工程的几种常见策略——写入、选择、压缩和隔离。
2025-08-15 13:42:46
799
原创 一文对比四大技术:LLM、RAG、Workflow、Agent应用场景解析
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-08-14 14:02:17
956
原创 从理论到落地:分层记忆架构在AI Agent中的应用实践
要让 AI Agent 告别“金鱼记忆”,真正变得智能、高效,分层记忆(Tiered Memory Architecture) 是核心策略。它模拟了人类大脑处理信息的方式,将不同类型、不同时效性的记忆存储在最适合它们的地方,从而实现 Agent 的高效运作和智能决策。
2025-08-12 13:48:58
909
原创 GraphRAG 技术详解:如何将知识图谱集成到 RAG 系统中?
当我们说“大模型健忘”,其实说的是它的“知识储存能力有限”,尤其是面对企业内部专业文档、复杂背景知识时,一问三不知的现象比比皆是。
2025-08-07 11:03:21
1001
原创 【建议收藏】大模型三大优化技术深度对比:蒸馏 vs RAG vs 微调,到底怎么选?
LORA (Low-Rank Adaptation) 微调是一种针对大规模预训练模型的优化技术,用于在较少计算资源和数据的情况下,对这些模型进行有效微调。
2025-08-05 14:09:09
1534
原创 企业级AI系统的演进之路——LLM+RAG+Agent融合架构实践
这套系统不仅解决了传统RAG的局限性,更为AI Agent的发展提供了新的思路。通过标准化的MCP协议,我们实现了工具能力的模块化和复用,为构建更强大的AI系统奠定了基础。
2025-08-05 13:52:11
845
原创 【建议收藏】生产级RAG系统落地的10条实战经验:这些坑,我们替你踩过了
本次分享主要针对企业AI系统转化为商业价值的关键难题:根据麦肯锡的估计,当前企业AI总规模高达4.4万亿美元 ,但同时福布斯的调查指出只有约四分之一的企业真正从AI中获益 。为什么大部分项目无法突破试点?
2025-08-04 17:17:32
730
原创 【建议收藏】大模型应用选型指南:RAG 还是微调?这4个关键维度必须搞懂
技术选型的纠结,往往源于对“完美”的执念和对“错误”的恐惧。然而,在AI应用落地的战场上,“快速验证、小步迭代”才是王道。
2025-08-04 17:07:35
696
原创 AI智能体开发12法则:从新手入门到专业架构的完整学习路径
我们时常想着构建一个能自主解决复杂问题的智能助手?但与此同时,也因其不可预测、时常犯错而感到困惑和沮丧?本文将和你一起探索 “12-Factor Agents” ,看看它是否能指引我们构建出更健壮、更可靠、更可控的 AI Agents。
2025-07-28 10:58:24
1023
原创 构建企业级智能代理:LangGraph + 实时搜索 + PDF导出完整实现
传统的AI聊天系统往往局限于预训练数据的知识范围,无法获取实时信息。本文将详细阐述如何构建一个基于LangGraph的智能代理系统,该系统能够智能判断何时需要进行网络搜索、有效维护对话上下文,并具备将对话内容导出为PDF文档的功能。
2025-07-21 11:51:21
599
原创 斯坦福多模态交互 Agent 综述:Agent AI 集成及其技术挑战
这篇论文深入探讨了多模态人工智能系统,尤其是智能体(Agent)在物理和虚拟环境中的交互性。它不仅为研究人员和AI领域提供了一份研究路线图,更展现了AI未来发展的深刻洞见。论文的核心内容分为以下几个部分:
2025-06-04 19:27:22
695
原创 务必收藏,Transformer细节18问18答
4.3 从输入输出角度,N个Transformer Encoder block中的第一个Encoder block的输入为一组向量 X = (Embedding + Positional Embedding),向量维度通常为512_512,其他N个TransformerEncoder block的输入为上一个 Transformer Encoder block的输出,输出向量的维度也为512_512(输入输出大小相同)。在Test阶段,下一个时刻的输入时是前一个时刻的输出,如图9所示。
2024-11-20 10:46:04
1035
原创 独家揭秘:39种提示工程策略与应用全解析,AI界的高手都在用!
大型语言模型(LLMs)在许多不同的自然语言处理(NLP)任务上表现出了显著的性能。提示工程在提升LLMs已有能力方面发挥着关键作用,使其在各种NLP任务上取得了显著的性能提升。提示工程需要编写自然语言指令,即提示,以结构化的方式从LLMs中提取知识。与以往的最先进(SoTA)模型不同,提示工程不需要根据给定的NLP任务进行广泛的参数重新训练或微调,而是仅依赖于LLMs的内嵌知识。此外,LLMs的爱好者可以通过基本的自然语言对话交换或提示工程,智能地提取LLMs的知识,使得越来越多的人即使没有深厚的数学机器
2024-11-20 10:43:39
833
原创 一文彻底搞懂深度学习 - Transformer
Transformer是一种基于自注意力(Self-Attention)机制的深度学习模型,最初由Vaswani等人在2017年的论文《Attention Is All You Need》中提出。它完全基于注意力机制构建,摒弃了传统的循环和卷积结构,用于解决自然语言处理领域的任务,如机器翻译、文本生成等。Transformer一、Transformer的本质什么是Transformer?Transformer模型是一种强大的深度学习架构,它利用自注意力机制和多头注意力来捕捉序列内部的依赖关系,并通过位置编码
2024-11-20 10:41:12
1148
原创 大模型微调到底有没有技术含量?
老生常谈的一句话吧:有没有技术含量取决于这个工作你怎么做,尤其是 llm 方向,上手门槛相比传统 NLP 变得更低了。我举一些例子吧,针对大模型微调的几个重要环节,我列举的每一种做法大概率都能完成最终目标,甚至说训出来的模型效果都没什么差别。但对个人能力成长的帮助就大不相同了。
2024-11-20 10:38:38
829
原创 一文讲清楚,AI、AGI、AIGC与AIGC、NLP、LLM,ChatGPT等概念
随着chatgpt3.5的横空出试,大模型爆火,这个风暴传递到了各行各业。各类公众号、帖子,也涌现出了各种概念,AI、大模型、LLM、AI、AIGC、AGI、GPT、ChatGPT等等。总觉得被这些概念搞得头晕。我花了点时间,梳理了下一些常见的概念,希望从基本上能对大模型(LLM)有个基本的认识。
2024-11-19 10:21:35
1110
原创 多任务学习:MMOE网络解析和模型实战
基于共享表示(shared representation),把多个相关的任务放在一起学习的一种机器学习方法。
2024-11-19 10:21:04
1243
原创 大模型知识问答: 文本分块要点总结
用较大chunk_size去字符切分文本,然后对大文本块用LLM做总结,作为摘要块加入向量数据库中。能在一定程度解决前面提到的问题1。
2024-11-19 10:20:05
1335
原创 RAG or 微调?为特定用例选择适当方法的实践分享!
示例的 notebook 文件完整展示了利用 Amazon SageMaker 的功能对大型语言模型进行高效且可扩展的微调,提供了从头到尾的全面工作流程代码实现,我们还将在后面的章节中详细展开分析这些代码。此外,建议在单独的测试数据集上评估微调模型的性能,以获得其实际性能的无偏估计。然而,模型微调也有其自身的挑战。该 Workshop 中的 RAG 实现示例的一个显著优势是:可以检索到信息的来源归因,这在很大程度上提高了信息的透明度,并降低了模型幻觉的风险,从而确保最终生成的响应是基于事实基准的数据。
2024-11-19 10:19:25
1137
原创 多模态大模型总结
和原生多模态模型意味着这些模型是从一开始的设计阶段,就是用于处理多种模态(包括文本、图像、音频、视频等)的数据。把不同的单个模型拼接起来使得模型具备多模态能力这种做法也比较好理解,比如之前社区开源的Qwen-VL,它就是 Qwen-7B + Openclip ViT-bigG(2.54B)的结构,前者作为LLM基础模型,后者作为视觉模型,因此Qwen-VL也支持图像、文本多模态输入。在数据融合方面,来自不同模态的数据在模型内部被有效地融合,这样可以更好地理解数据间的关联和相互作用。
2024-11-18 14:45:00
973
原创 大模型微调:参数高效微调(PEFT)方法总结
PEFT (Parameter-Efficient Fine-Tuning) 参数高效微调是一种针对大模型微调的技术,旨在减少微调过程中需要调整的参数量,同时保持或提高模型的性能。以和为主的PEFT方法总结如下。
2024-11-18 10:36:23
616
原创 小白如何借助AI大模型提升就业能力?
随着AI技术的不断发展,越来越多的企业开始寻求具备AI大模型技术的人才。对于AI领域的小白来说,这是一个千载难逢的机遇。那么,如何借助AI大模型提升就业能力呢?
2024-11-18 10:34:34
533
原创 揭秘分布式训练与微调技巧:语言大模型的高效训练与优化指南
最近语言大模型(LLM)异常火爆,一个非常特别的开源社区正在探索在消费级硬件上微调、提供服务和进行推理的最佳方式。为满足上述需求,出现了许多出色的开源代码库,以HuggingFace生态系统为中心,这些代码库还包括FastChat、Axolotl和LLama.cpp。本文专注于分布式训练策略的具体细节,特别是DeepSpeed和FSDP,并总结了以多GPU和多节点训练为主的不同高效微调方法。显然,当前的趋势是,我们会使用越来越多的计算资源,因此将需要更多GPU来运行更大的模型。在这种情况下,理解这些主题尤为
2024-11-15 11:21:45
980
原创 6000字长文告诉你:大模型「训练」与「微调」概念详解
预训练的目的是让模型在一个广泛的数据集上学习到一些通用的特征或知识,即通用的大模型(我们称之为“预训练模型”(Pre-trained Model)),这个阶段的目标是构建一个具备广泛能力的模型,但可能无法满足特定场景的需求。量化是模型部署前的一个重要步骤,它有助于平衡模型的性能和效率,在一些应用中,可以接受一定程度的精度损失以换取显著的效率提升,使得大型模型能够在各种设备上有效运行。量化是一种模型优化技术,用于减少模型的计算和存储需求,从而提高模型在硬件上的运行效率,尤其是在资源受限的环境中。
2024-11-15 11:21:06
1240
原创 大模型所谓的参数是什么?大模型为什么需要训练?大模型训练到底干了什么?
大模型的本质是机器学习,机器学习的本质就是一种数学模型。我们经常能听到这样的说法,某某大模型有多少参数,某某大模型参数量又提升了,这里所说的参数到底是什么?我们知道大模型是训练出来的,那么哪些训练数据都跑哪去了,大模型训练的过程中都干了什么?为什么大模型需要训练?。
2024-11-14 11:40:57
1455
原创 你了解AI大模型吗?
AI大模型的出现,标志着人工智能在自然语言处理领域的一个重要里程碑。它们不仅能够帮助我们更好地理解和处理信息,还在生成内容和智能对话上大展身手。当然,随着技术的发展,大模型还在不断迭代,未来或将成为更多领域的得力助手。大模型的核心理念和原理可能看起来复杂,但其应用已逐渐深入到我们的日常生活中,为我们带来前所未有的便利和可能性。
2024-11-14 11:38:47
895
原创 如何最简单、通俗地理解大模型?
同时模型达到一定的规模时,它会表现出一些在小模型中不曾出现的新能力(如常识推理、创作能力),这些能力不是被特意设计或训练出来的,而模型的规模增长中“涌现”出来的,被称为。其次,大模型的参数量大。缩放定律体现:在 WebText2 上训练的语言模型,随着模型参数变大,模型精度损失减少,性能提升。就像一个博览群书、知识渊博的人一样,训练数据量大的好处是,模型可以充分地学习到数据中的模式和特征,在更广泛的场景下有更好的效果。更进一步,我们还可以训练模型,基于它学到的规则,来生成包含猫的图片,也就是数据生成。
2024-11-14 11:37:22
637
原创 【100个AI核心概念】智能体Agent
反应式智能体是最简单的智能体类型,它们直接响应环境。通过这些特征,智能体能够在多种环境中执行复杂的任务,从简单的数据收集到复杂的决策制定,智能体都能够提供有效的解决方案。随着技术的发展,智能体的能力正在不断扩展,它们在医疗、教育、交通等多个领域的应用也在不断增加,显示出巨大的潜力和价值。下面,我们将探讨四种主要的智能体类型:反应式智能体、基于目标的智能体、基于效用的智能体和学习智能体。智能决策系统会评估当前的速度、行人的距离和行人移动的速度,然后使用这些数据来预测不同行动方案的后果,并选择最安全的操作。
2024-11-13 16:30:00
1047
原创 大型语言模型(LLMs)运作机制全解析:理解其基本工作方式
嵌入是一种方法,可以将具有大量维度的数据(如包含大量离散单词和组合的大型文本)以较少的数据进行数学表示,同时不会丢失太多细节。与其讨论它们将使哪些工作变得过时,本文将探讨这些模型的工作原理,包括它们从哪里获取数据以及使它们能够生成令人信服的真实文本的基本数学方法。也许下次你会调整对他的迟到的期望。语言模型和生成文本当你的数据有时间元素时——比如预测未来股票价格或理解即将到来的选举——模型的作用就很明显了。除非你的数据非常直接,否则你可能需要测试不同的方法并在你的模型开始有意义之前进行不断的调整。
2024-11-13 11:41:19
584
原创 大模型微调到底有没有技术含量?别再问了...
并不是说以上的“做法1”是不对的,我自己也有过很多次的“做法1”,毕竟相信前辈往往都能有不错的结果。我只是想强调:SFT这个方向有没有技术含量,还是要看自己的定位和做法。
2024-11-13 11:39:23
714
原创 Transformer系列:图文详解Decoder解码器原理
每次总是以前面已经出现的单词加上编码器的中间状态,来预测下一个单词,比如红色阴影部分使用"+我"来预测下一个单词“爱”,以此类推该条样本可以分为预测“我”,“爱”,“你”,“end”四个任务,Decoder的目标是输出“我”,“爱”,“你”,“end”四个位置的embedding,这四个任务的预测准确度作为整条样本的预测目标。交互注意力层和编码器中的注意力层网络结构基本没有差异,但是由于有两方进行交互因此Q,K,V的分配上需要单独设计,解码器交互注意力层的特写如下。
2024-11-12 16:00:00
5994
原创 大白话讲清楚:什么是 Langchain 及其核心概念
提问:用户提出问题。举例:如上图所示展示了一个智能问答系统的工作流程,它从用户提出的问题(Question)开始,然后通过相似性搜索(Similarity Search)在一个大型数据库或向量空间中找到与之相关的信息。想象一下,如果你能让聊天机器人不仅仅回答通用问题,还能从你自己的数据库或文件中提取信息,并根据这些信息执行具体操作,比如发邮件,那会是什么情况?总之,Langchain 打开了一个充满可能性的新世界,让AI技术更加贴近我们的实际需求和数据,使得机器学习应用的发展更加多样化和个性化。
2024-11-12 11:04:25
555
原创 不会还有人不知道什么是大模型吧?快来看!
模型参数是指在机器学习和深度学习模型中可学习的权重和偏置等变量。在训练过程中,通过优化算法(如梯度下降)来调整这些参数,以最小化模型预测值与实际值之间的差距。参数的初始值通常是随机的,随着训练的进行,它们会逐渐收敛到合适的数值,以捕捉输入数据中的复杂模式与关系。在大模型中,参数的数量通常非常庞大。举个例子,OpenAI的GPT-3模型拥有约1750亿个参数,使其能够执行更复杂的任务,如自然语言生成、翻译、摘要等。大量参数使模型具有更强的表示能力,但同时也带来了更高的计算成本和内存需求。
2024-11-12 11:03:12
730
原创 科普神文,一次性讲透AI大模型的核心概念
Transformer已经引领了各种尖端的AI应用程序的创建。除了支持像Bard和ChatGPT这样的聊天机器人之外,它还驱动我们移动键盘上的自动完成功能和智能扬声器中的语音识别。然而,它的真正威力在语言之外。它的发明者发现,transformer模型可以识别和预测任何重复的主题或模式。从图片中的像素,使用Dall-E、Midjourney和Stable Diffusion等工具,到计算机代码使用GitHub Copilot等生成器。它甚至可以预测音乐中的音符和蛋白质中的DNA来帮助设计药物分子。
2024-11-12 11:00:42
756
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅