- 博客(11)
- 收藏
- 关注
原创 改了个字符串 项目无法启动,springboot循环依赖问题分析
一、描述在一次项目开发中,业务方需要改下发送到kafka的json消息中key的名称,把字符串小写的"id"改成了大写的"Id" 在构建部署上线的过程中 线上一直报警 重新构建下,然后部署上线就好了二、分析由于代码变动很小 基本上不会影响任何地方,所以排除是这次修改导致的 在第2点和第3点的情况下 可以初步判断是k8s部署平台的问题,是不是某次构建触发了其中的某个机制导致构建的jar包无法使用三、原因考虑到可能是k8s平台的问题,于是将该平台两次构建的jar包分别下载下来。然后对这两个
2021-03-27 12:03:49 374
原创 docker安装tomcat下的日志查看
目录描述进行原因扩展解决参考描述在本地可以运行的项目,基本上都能测试通过。可是部署到linux服务器后,发现测试出现些问题。服务器环境是使用docker安装的tomcat。进行一般来说,出现问题,排查日志能解决大部分情况。可是docker进入运行中的tomcat,发现logs目录下并没有网上说的/usr/local/tocmat/logs/catalina.out文件,为了再确认下,在to...
2020-04-04 00:12:26 5287
原创 windows下使用iconv命令批量原地转码文件
一、简述 IDEA中设置了文件全局编码为UTF8之后,对于原先GB2312编码的项目出现乱码。于是想将GB2312编码的文件全部转码成UTF8的。首先尝试使用notepad,该编辑器一次只能转码一个文件,效率不高,解决方法有安装python脚本插件,看起来有点麻烦。于是想到windows上可以使用git bash,而bash中转码命令iconv。下面使用这个命令来完成批量原地转码。...
2020-03-18 01:36:19 1625
原创 猿辅导秋招算法题
一、局部极小值 给定一个无序数组,没有重复元素。如果下标i的元素比左右两个元素都小,那么该下标元素是局部极小值,返回该下标。当i为0的时候不需要和左边比较,当i为数组长度-1的时候不需要和右边比较。比如2 5 3 4 7 1,那么局部极小值元素是2 3 1,返回其中任意一个元素下标即可,比如返回0就可以。要求最坏情况下是O(lgn)。 对无序数组使用二分法,当取得中点m...
2019-09-24 13:08:12 471
原创 腾讯秋招算法题
一、找中位数 给定两个有序的列表A,B 找出两个列表所有数的中位数。https://leetcode.com/problems/median-of-two-sorted-arrays//** * 找出中位数 * 2019年9月4日 下午4:22:17 */public class FindMiddle { public double find(int[] a, int[]...
2019-09-04 21:21:17 299 2
转载 Python交互界面方向键、退格键乱码
一、出现原因 在安装python之前没有安装readline和readline-devel模块二、解决办法# 安装readline模块yum install readline readline-devel#删除原先安装目录rm /usr/local/python3# 进入Python源码目录cd /opt/Python-3.6.1# 重新执行Python的安装confi...
2018-05-24 16:03:15 1393
原创 特征抽取 PCA主成分分析
一、方法 主成分分析也成主分量分析,利用降维的思想,将多个指标特征转化为少数的几个综合指标特征。是一种线性变化来简化数据集的技术。在减少维数的同时还尽可能多的保留数据集的特征。 作用在于: 降低维数,弄清变量间关系,在低维可以图形化,构造回归模型以及筛选回归变量等二、步骤 1.对原始数据标准化 xi=(Xi-平均值Xi)/Si 2.计算标准化后的相关系数矩阵R 3.计...
2018-05-19 14:41:23 3416
转载 特征选择 ReliefF算法
一、算法 Relief算法最早由Kira提出.基本内容:从训练集D中随机选择一个样本R,然后从和R同类的样本中寻找k最近邻样本H,从和R不同类的样本中寻找k最近邻样本M,最后按照公式更新特征权重. 算法: 1.置0所有特征权重 2.For i=1 to m do 2.1随机选择一个样本...
2018-05-18 21:43:12 55241 86
原创 java调用matlab
一、准备 Matlab R2015b Eclipse Kepler Service Release 2 Jdk 1.7二、编写Matlab文件 myadd.m% matlab实现简单的add函数供java调用function out=myadd(n,a,b) out=a(n)+b(n);end 在matlab命令行输入deploytool进行打包选择library p...
2018-05-16 22:38:28 347
原创 命令行打包jar
对于使用Eclipse自动打包jar比较方便,但是如果不加限制结果可能jar中包含很多其他多余文件。因此可以自定义打包样式,在命令行使用jar命令完成java程序打包.一、简单打包 新建一个目录tmp,进入该目录. 新建Hello.java文件,内容如下:public class Hello{ public static void main(Strin...
2018-05-05 21:44:16 21244
转载 线段树
树是数据结构中最重要的逻辑结构。其中有红黑树,伸展树,AVL树,BST树,2-4树,B树,B+树,B-树等等。这里我们介绍一种新的树状结构--线段树。线段树常常用来求任意下标元素的最大值、最小值或者是求和等等。线段树构造有很多方式,比如: 图片来源:线段树 这个首先用树的结构将每个节点信息存储下来。大概有开始编号,结束编号,父节点指针,左孩子指针,右...
2018-04-25 13:23:00 487 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人