文献阅读:Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
背景在用户异构(用户的通信、计算能力不同)的蜂窝网络中,传统的联邦学习会很低效。这是因为传统联邦学习中每轮参与模型训练的用户是随机选取的,这样如果一轮中选取的某些用户的通信、计算能力较差,那么其模型训练、上传所需的时间就更长,进而拖延本轮的模型聚合步骤,最终导致整个模型训练效率的低下。研究内容 论文提出了FedCS协议,将传统联邦学习的随机选取参与用户改为由用户的资源情况选择尽可能多的“优质”用户来进行模型更新。图示如下:FedCS协议的具体步骤:1....
原创
2021-11-07 22:29:43 ·
2701 阅读 ·
0 评论