第一章 函数
前言
本套博文书写风格是教案风格… 大家请按照章节阅读,不能点开的就是没写出来呢还…
- 第一章 函数
- 第二章 Python高级特性
- 第一节 切片
- 第二节 迭代
- 第三节 列表生成
- 第四节 生成器和迭代器
- 第三章 函数式编程
- 第一节 Lambda表达式
- 第二节 高阶函数
- 第三节 装饰器
- 第四节 偏函数
本章主要系统的学习Python函数的基本内容.
函数是Python甚至所有的高级语言都支持的语言特征,Python不仅可以灵活的定义函数,而且自身还内置以许多实用的函数,给我们的开发带来了极大的便利.
举一个简单的例子,我们知道圆的面积计算公式为
如果让你计算一个半径为10的圆的面积,你可能这样实现
r1 = 10
s1 = 3.14*r1*r1
圆的半径变了,你就需要重复的去书写一些内容,并且,前提是你还记得公式是什么
r2 = 15
r3 = 20
s2 = 3.14*r2*r2
s3 = 3.14*r3*r3
这还只是是在公式简单并且参数单一的情况下.
如果公式变得十分复杂,我们需要代入的数据非常多的时候,事情就会变得很麻烦.
类比数学中的一些公式,在程序中反复执行的代码,我们可以封装到一个代码块当中,例如,计算圆的面积
s = area_of_circle(x)
今后我们再计算圆面积时,只需要传入一个半径,就可以得到结果了.
其实,area_of_circle
这个封装起来的,解决圆的面积计算方法的代码块,我们可以称作函数
抽象
抽象是数学中常见的概念,也是计算机程序必不可少的一种思维方式.借助抽象,我们才能不关心底层的具体计算过程,而直接在更高的层次上思考问题.
在Python中,我们没有必要自己去思考几个数字类型相加如何去计算,因为Python给我们提供了sum()
函数,sum
其实就是一种对求和的方法的抽象,这可以帮助我们直接关心业务逻辑,忽略加法的具体过程.
同理,如果我们想要获得一个圆的面积,也可以采用类似数学公式的概念,将具体的,重复的问题抽象化
import math
def area_of_circle(x):
return math.pi*x*x
自己定义函数的过程,就是一个抽象的过程,这需要我们在接下来的课程中不断的学习.