CAP


CAP理论:一个分布式系统不可能同时满足一致性,可用性和分区容错性,最多只能同时满足其中的两项。

C_一致性(Consistency) (所有节点在同一时间具有相同的数据)

对于一个将数据副本分布在不同分布式节点上的系统来说,如果对第一个节点的数据进行了更新操作并且更新成功后,却没有在的第二个节点上的数据得到相应的更新,于是在第二个节点上的数据进行读取操作时,获取的依然是旧数据(脏数据),这就是典型的分布式数据不一致的情况。在分布式系统中,如果能够做到针对一个数据项的更新操作执行成功后,所有的用户都可以读取到更新后的值,那么这样的系统就被认为具有严格的一致性(强一致性)。

A_可用性(Availability) (保证每个请求不管成功或者失败都有响应)

可用性是指系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间内返回结果。
其中“有限的时间内”是指,对于用户的一个操作请求,系统必须能够在指定的时间内返回对应的处理结果,如果超出这个时间范围,系统则被认为是不可用的。
“返回结果”是可用性的一个重要指标,要求系统在完成对用户请求的处理后,返回一个正常的相应结果。正常的响应结果通常能够明确的反应出对请求的处理结果,即成功或失败。

P_分区容错性(Partition tolerance) (系统中任意信息的丢失或失败不会影响系统的继续运作)

分区容错性约束了一个分布式系统需要具有如下特性:分布式系统在遇到任何网络分区故障的时候,仍然需要能够保证对外提供满足一致性的可用性的服务,除非整个网络环境都发生故障。

CAP定理应用:

放弃CAP定理 说明
CA
放弃P
放弃p的同事也就意味着放弃了系统的可扩展性,即尽可能的将所有的数据(或者仅仅是那些与事务相关的数据)都存放在一个分布式节点上。 数据同步C需要时间,也要正常的时间内响应A,那么机器数量就要少,所以P就不满足
CP
放弃A
相对于放弃P,放弃可用性则正好相反,其做法是一旦系统遇到网络分区或其他故障,那么受到影响的服务需要等待一定的时间,因此在等待时间内,系统不可用。 数据同步C需要时间, 机器数量也多P,但是同步数据需要时间,所以不能再正常时间内响应,所以A就不满足
AP
放弃C
事实上,放弃一致性指的是放弃数据的强一致性,而保留数据的最终一致性。即虽然数据不能保证实时一致性,但能保证数据最终会达到一个一致的状态。 机器数量也多P,正常的时间内响应A),那么数据就不能及时同步到其他节点,所以C不满足
事实上,放弃一致性指的是放弃数据的强一致性,而保留数据的最终一致性。即虽然数据不能保证实时一致性,但能保证数据最终会达到一个一致的状态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值