线性求逆元

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll inv[4000010], n, p, mod;
void get_inv() {
    inv[1] = 1;
    cout << inv[1] << endl;

    for (int i = 2; i <= n; i++) {
        inv[i] = (mod - mod / i) * inv[mod % i] % mod;
        cout << inv[i] << endl;
    }
}
int main() {
    cin >> n >> p;
    mod = p;
    get_inv();
    return 0;
}

 乘法逆元 - OI Wiki (oi-wiki.org)

// C++ Version
s[0] = 1;
for (int i = 1; i <= n; ++i) s[i] = s[i - 1] * a[i] % p;
sv[n] = qpow(s[n], p - 2);
// 当然这里也可以用 exgcd 来求逆元,视个人喜好而定.
for (int i = n; i >= 1; --i) sv[i - 1] = sv[i] * a[i] % p;
for (int i = 1; i <= n; ++i) inv[i] = sv[i] * s[i - 1] % p;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值