最大独立集问题

本文介绍了最大独立集问题,探讨了如何将集合问题转化为无向图并寻找最大独立集。最大独立集是图论中的一个重要概念,它的补图对应于最大团。对于二分图,最大独立集可以通过最大匹配来求解,存在多项式时间算法。此外,还讲解了二分图的最小顶点覆盖与最小路径覆盖问题,它们与最大匹配的关系及其证明。文章末尾提供了二分图最大匹配的算法实现思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最大独立集问题

Given N sets of integers, remove some sets so that the remaining all sets are disjoint with one another. Find the optimal solution so that the number of sets remaining at the end is maximum. please explain your algorithm properly rather than pasting code .

分析

题目构造数学模型很简单,每一个集合看成一个点,如果两个集合中有相同的数字,则这两个集合对应的点相连接。最后会构成一个无向图,我们就是要求这个图的最大独立集。要求一个图的最大独立集就是求其补图的最大团。

最大团

这里介绍一下最大团

给定一个无向图G=(V,E),如果U属于E,且任意(u,v)属于U,且同时又属于E,则称U是G的完全子图。 G的完全子图U是G的最大团当且仅当U不包含在G的更大的完全子图中,即U就是最大的完全子图。

如下图:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值