Dijkstra求最短路

一、最短路几种算法的对比

在这里插入图片描述
LeetCode相关题目:
743. 网络延迟时间
847. 访问所有节点的最短路径

二、Dijkstra

1.基本思路

稠密图用邻接矩阵,稠密图(m约为n2)用朴素Dijkstra

初始化距离dist[1] = 0, dist[i] = +无穷   
// Si:当前已经确定的最短距离的点集
For i :1~n  O(n)
    t <- 不在s中的距离最近的点   //O(n),稀疏图可堆优化为O(1)
    s <- t  //每次t都不一样  
    用t更新其他点的距离:       //总共O(n^2)约为O(m)  稀疏图可优化为总共O(mlogn)

时间复杂度 O ( n 2 ) O(n^2) O(n2) ,不妨只考虑有向图。

稀疏图用邻接表,稀疏图(m约为n)用堆优化版Dijkstra。时间复杂度 O ( m l o g n ) O(mlogn) O(mlogn)
总之,Dijkstra是一种贪心算法。

2.定理/规律

定理(最优子结构特征)
若图G不存在负有向圈,则任一最短路的子路也是相应点对间的最短路。
证明:
可容易由反证法证得。

规律:
根据该算法每次得到的点u对应的最短距离d(u)是递增的。
证明:
S S S已确定最短路的点的集合, S S S中依次确定的点为 u 0 , u 1 , . . . , u n − 1 u_0,u_1,...,u_{n-1} u0,u1,...,un1 d [ u ] d[u] d[u] S S S里点 u u u的最短距离, d i s t [ j ] dist[j] dist[j] S S S补集里点 j j j的当前距离。

考虑第 k k k个得到的点 u k u_k uk的产生过程,其最短距离为 d ( u k ) d(u_k) d(uk)。对于 S k − 1 = { u 0 , . . . , u k − 1 } S_{k-1}= \left\{ {u_0,...,u_{k-1}} \right\} Sk1={u0,...,uk1},在 S k − 1 S_{k-1} Sk1所更新的所有 d i s t dist dist中, d ( u k ) d(u_k) d(uk)为最小因而被选中,而剩余的 d i s t dist dist都大于 d ( u k ) d(u_k) d(uk)。… … … … … … … …(1)
此时,新的
S k = S k − 1 ∪ { u k } S_k=S_{k-1} \cup \left\{ {u_k} \right\} Sk=Sk1{uk}
此时再去更新 d i s t dist dist时,只有 u k u_k uk能改变其他点的 d i s t dist dist数值( S k − 1 S_{k-1} Sk1能改变的 d i s t dist dist已在产生 u k u_{k} uk时改变). … … … … … … … … …(2)
因此由(1)(2)可知, d i s t dist dist均大于 d ( u k ) d(u_{k}) d(uk).
这时,再从所有 d i s t dist dist中选最小的作为 d ( u k + 1 ) d(u_{k+1}) d(uk+1),则 d ( u k + 1 ) d(u_{k+1}) d(uk+1)必大于 d ( u k ) d(u_{k}) d(uk).
因此,结论成立。

3.算法正确性证明

Dijkstra的正确性
即每一步得到的d[u]都是起点到结点u的最短路径值。
证明:
用数学归纳法,显然当k=0,1时结论成立。
在这里插入图片描述

假设当 n < k n<k n<k时结论都成立,即 u 0 , u 1 , . . . , u k − 1 u_0,u_1,...,u_{k-1} u0,u1,...,uk1都找到了最短路,最短距离分别为 d 0 , d 1 , . . . , d k − 1 d_0,d_1,...,d_{k-1} d0,d1,...,dk1
则当 n = k n=k n=k时,若所确定的 d k d_{k} dk非真实最优解,则存在另一条到达 u k u_k uk的路径P,P为真实最短路,使得该路径长度 d p < d k d_p<d_{k} dp<dk,且设该路径在S中的最后一个点 u t u_t ut
(1)若 u t u_t ut不为 u k − 1 u_{k-1} uk1,则由定理(最优子结构特征)与归纳假设知,最短路P的距离 d p = d t + c o s t ( t , k ) d_p=d_t+cost(t, k) dp=dt+cost(t,k),其中 c o s t ( t , k ) cost(t, k) cost(t,k) u t u_t ut u k u_k uk的最短路距离,可能包含多条边的权重。由于 d k = m i n { d i + w ( i , k ) } , i = 0 , 1 , . . . , k − 1. d_k=min \left\{ {di + w(i, k)} \right\},i=0,1,...,k-1. dk=min{di+w(i,k)},i=0,1,...,k1.知, d k < d p d_k<d_p dk<dp,因此矛盾;
(2)若 u j u_j uj u k − 1 u_{k-1} uk1,则存在路使得 d k − 1 d_{k-1} dk1更小,与归纳假设矛盾。
综上,命题成立。

三、朴素Dijkstra求最短路算法

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。
输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
思路
由n,m的数据范围可知,该图为稠密图,用朴素Dijkstra。
代码

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510;

int n, m;
int g[N][N]; // 用邻接矩阵
int dist[N]; // 距离
bool st[N];  // 标记是否在S集合中

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist); // 初始化距离为无穷
    dist[1] = 0; // 起点
    
    for(int i = 0; i < n; i ++ ) // 确定n个点共需要n步
    {
        int t = -1;
        for(int j = 1; j <= n; j ++ )//更新后取最小或第一次取起点
           if(!st[j] && (t == -1 || dist[t] > dist[j])) 
             t = j;
             
        st[t] = true; // 放入集合S中
        
        for(int j = 1; j <= n; j ++ ) // 用t去更新
           dist[j] = min(dist[j], dist[t] + g[t][j]);
    }
    
    if(dist[n] == 0x3f3f3f3f) return -1; // 路径不存在
    return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);
    
    memset(g, 0x3f, sizeof g);
    
    while(m --)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        g[a][b] = min(g[a][b], c);
    }
    
    int t = dijkstra();
    
    printf("%d\n", t);
    
    return 0;
}

四、堆优化版Dijkstra

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为非负值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。
数据范围
1≤n,m≤1.5×105,
图中涉及边长均不小于 0,且不超过 10000。
输入样例:

3 3
1 2 2
2 3 1
1 3 4

输出样例:

3

思路
由n,m的数据范围知,该图为稀疏图,用堆优化的Dijkstra。
由于每次确定出的点t是不同的,用t去更新,则总共需更新O(m)次,每次更新在堆中的复杂度为O(logn),因此更新这步的总时间复杂度为O(mlogn)。取最小需进行O(n)次,每次取最小在堆中的时间复杂度为O(1),因此取最小这步的时间复杂度为O(n)。
故堆优化版的Dijkstra的时间复杂度为O(mlogn)。
tips
朴素版未必就性能差,堆优化也未必性能好,主要看图的稀疏程度。
(1)稀疏图的 n n n m m m相似,因此堆优化版的时间复杂度 O ( m l o g n ) ≈ O ( m l o g m ) O(mlogn) \approx O(mlogm) O(mlogn)O(mlogm)
O ( m l o g m ) < O ( m ∗ m ) O(mlogm)<O(m*m) O(mlogm)<O(mm),因此稀疏图用堆优化。
(2)稠密图的 m m m大致为 n 2 n^2 n2级别。
O ( n 2 ) ≈ O ( m ) < O ( m l o g n ) O(n^2) \approx O(m) < O(mlogn) O(n2)O(m)<O(mlogn),因此稠密图用朴素版。
代码

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

typedef pair<int, int> PII;

const int N = 150010;

// 稀疏图用邻接表来存
int n, m;
int h[N], e[N], ne[N], w[N], idx; // w用来存边权重
int dist[N]; // 用来存距离
bool st[N]; // 如果为true说明这个点的最短路径已经确定

/*有重边也不要紧,假设1->2有权重为2和3的边,再遍历到点1的时候2号点的距离会更新两次放入堆中,
这样堆中会有很多冗余的点,但是在弹出的时候还是会弹出最小值2+x(x为之前确定的最短路径),并
标记st为true,所以下一次弹出3+x会continue不会向下执行。*/
void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    priority_queue<PII, vector<PII>, greater<PII>> heap; // 定义一个小根堆
    heap.push({0, 1});

    while(heap.size())
    {
        auto t = heap.top(); // 取不在集合S中距离最短的点
        heap.pop();

        int ver = t.second, distance = t.first;
        if(st[ver]) continue;
        //去冗余,1.重边2.更新后dist更短放入堆中,堆中有原有的冗余dist
        st[ver] = true; 

        for(int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];  // i只是个下标,e中在存的是i这个下标对应的点。
            if(dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if(dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h);

    while(m --)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }

    int t = dijkstra();

    printf("%d\n", t);

    return 0;
}

Dijkstra算法是单源最短路径的经典算法,其基本思想是通过逐步扩展生成最短路径集合,最终得到源点到所有其它点的最短路径。 以下是C++实现: ```c++ #include <iostream> #include <vector> #include <queue> #include <cstring> using namespace std; const int INF = 0x3f3f3f3f; // 定义正无穷 struct Edge { int to, w; Edge(int to, int w) : to(to), w(w) {} }; vector<Edge> G[100010]; // 邻接表存图 int dist[100010]; // 存储最短路径长度 bool vis[100010]; // 标记是否已经确定最短路径 void dijkstra(int s) { memset(dist, INF, sizeof(dist)); // 初始化距离为正无穷 memset(vis, false, sizeof(vis)); // 初始化标记为未确定最短路径 dist[s] = 0; // 源点到自己的距离为0 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; // 小根堆 q.push(make_pair(0, s)); // 将源点入队 while(!q.empty()) { int u = q.top().second; // 取出当前距离最小的点 q.pop(); if(vis[u]) continue; // 如果已经确定最短路径,直接跳过 vis[u] = true; // 标记为已确定最短路径 for(auto e : G[u]) { // 遍历所有相邻的点 int v = e.to; int w = e.w; if(dist[v] > dist[u] + w) { // 如果当前路径更优 dist[v] = dist[u] + w; // 更新最短路径距离 q.push(make_pair(dist[v], v)); // 将该点加入小根堆 } } } } int main() { int n, m, s; cin >> n >> m >> s; for(int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; G[u].push_back(Edge(v, w)); } dijkstra(s); for(int i = 1; i <= n; i++) { if(dist[i] == INF) cout << "INF" << endl; // 如果不连通,输出INF else cout << dist[i] << endl; } return 0; } ``` 输入格式:第一行输入三个整数n,m,s,表示图的点数、边数和源点编号。接下来m行每行三个整数u,v,w,表示一条从u到v的有向边,边权为w。 输出格式:输出n行,每行一个整数,表示源点到每个点的最短路径长度。若不连通,则输出INF。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值