原题链接:668. 乘法表中第k小的数
题目大意
几乎每一个人都用 乘法表。但是你能在乘法表中快速找到第k小的数字吗?
给定高度m
、宽度n 的一张 m * n
的乘法表,以及正整数k
,你需要返回表中第k
小的数字。
例子:
输入: m = 3, n = 3, k = 5
输出: 3
解释:
乘法表:
1 2 3
2 4 6
3 6 9
第5小的数字是 3 (1, 2, 2, 3, 3).
输入: m = 2, n = 3, k = 6
输出: 6
解释:
乘法表:
1 2 3
2 4 6
第6小的数字是 6 (1, 2, 2, 3, 4, 6).
数据范围:
m 和 n 的范围在 [1, 30000] 之间。
k 的范围在 [1, m * n] 之间。
思路
乘法表效果图:
本题中,直接找第k小的数有困难,但是给出某个具体的数x,去计算其在乘法表中为第几小(次序)还是容易做到的,因此考虑采用二分法。
- 判定某个数x的次序:遍历乘法表的每一行,第i行比数x小的数字有min(x/i, n)个,累加每一行的数则可得到x在乘法表的次序。当然,因为x可能有重复,故求出的次序大于等于实际次序。时间复杂度为O(m)。
- 二分:最终答案的取值范围在1~n*m之间。给出一个数x,判定其在乘法表中的次序get(x),使得get(x)>=k满足的最小x即为答案。
代码
class Solution {
public:
int get(int m, int n, int x){
int sum = 0;
for(int i = 1; i <= m; i ++ ){
sum += min(x / i, n);
}
return sum;
}
int findKthNumber(int m, int n, int k) {
int l = 1, r = m * n;
while(l < r){
int mid = l + r >> 1;
if(get(m, n, mid) >= k) r = mid;
else l = mid + 1;
}
return l;
}
};
时间复杂度
判定某个数的次序为O(m),二分需要O(log(mn)),故总的时间复杂度为O(mlog(m*n)).