【LeetCode】668. 乘法表中第k小的数

668. 乘法表中第k小的数

原题链接:668. 乘法表中第k小的数

题目大意

几乎每一个人都用 乘法表。但是你能在乘法表中快速找到第k小的数字吗?
给定高度m 、宽度n 的一张 m * n的乘法表,以及正整数k,你需要返回表中第k 小的数字。
例子:

输入: m = 3, n = 3, k = 5
输出: 3
解释: 
乘法表:
1	2	3
2	4	6
3	6	9

第5小的数字是 3 (1, 2, 2, 3, 3).
输入: m = 2, n = 3, k = 6
输出: 6
解释: 
乘法表:
1	2	3
2	4	6

第6小的数字是 6 (1, 2, 2, 3, 4, 6).

数据范围:

m 和 n 的范围在 [1, 30000] 之间。
k 的范围在 [1, m * n] 之间。

思路

乘法表效果图:
在这里插入图片描述

本题中,直接找第k小的数有困难,但是给出某个具体的数x,去计算其在乘法表中为第几小(次序)还是容易做到的,因此考虑采用二分法

  • 判定某个数x的次序:遍历乘法表的每一行,第i行比数x小的数字有min(x/i, n)个,累加每一行的数则可得到x在乘法表的次序。当然,因为x可能有重复,故求出的次序大于等于实际次序。时间复杂度为O(m)。
  • 二分:最终答案的取值范围在1~n*m之间。给出一个数x,判定其在乘法表中的次序get(x),使得get(x)>=k满足的最小x即为答案。

代码

class Solution {
public:
    int get(int m, int n, int x){
        int sum = 0;
        for(int i = 1; i <= m; i ++ ){
            sum += min(x / i, n);
        }
        return sum;
    }

    int findKthNumber(int m, int n, int k) {
        int l = 1, r = m * n;
        while(l < r){
            int mid = l + r >> 1;
            if(get(m, n, mid) >= k) r = mid;
            else l = mid + 1;
        }

        return l;
    }
};

时间复杂度

判定某个数的次序为O(m),二分需要O(log(mn)),故总的时间复杂度为O(mlog(m*n)).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值