2021牛客多校9

本文探讨了LGV引理在数学中的应用,特别是FFT算法用于计算特定行列式的快速方法,并将其与解决二分图带花树问题相结合。作者介绍了范德蒙德行列式和匈牙利算法在优化路径同步中的策略,展示了如何利用FFT进行高效计算并解决实际问题。
摘要由CSDN通过智能技术生成

C[LGV 数学 FFT]

zfnb
在这里插入图片描述

题目链接

首先可以LGV 引理得到一个行列式,每项都是
a i , j = C j + a i − 1 j = ( j + a i − 1 ) ! j ! ( a i − 1 ) ! = ( j + a i ) … ( a i ) a_{i,j}=C^{j}_{j+a_i-1}=\cfrac{(j+a_i-1)!}{j! (a_i-1)!} = (j+a_i)\dots(a_i) ai,j=Cj+ai1j=j!(ai1)!(j+ai1)!=(j+ai)(ai)
先把 j ! j! j!​ 提出去,然后每一列都减去前面的列若干次(这里可以模拟一下整理 a i ∗ ( a i + 1 ) ∗ ( a i + 2 ) a_i*(a_i+1)*(a_i+2) ai(ai+1)(ai+2) 的过程),然后可以把通项变成这个样子 1 j ! ( a i + 1 ) j \frac{1}{j!}(a_i+1)^j j!1(ai+1)j

每一列再提出一个 a j + 1 a_j+1 aj+1 这是一个范德蒙德行列式,由公式可以知道 $A’ = \frac{1}{j!}\prod_{j=1}^{n}a_j+1\prod_{1\leq i \leq j \leq n}a_j-a_i $

再把前面的阶乘加上,答案就是 ∏ j = 1 n 1 j ! ∏ j = 1 n a j + 1 ∏ 1 ≤ i ≤ j ≤ n a j − a i \prod_{j=1}^{n}\frac{1}{j!}\prod_{j=1}^{n}a_j+1\prod_{1\leq i \leq j \leq n}a_j-a_i j=1nj!1j=1naj+11ijnajai

后面这一项可以愉快地卷积,这里复制一下FFT的笔记

利用卷积求
∏ 1 ≤ i ≤ j ≤ n a j − a i \prod_{1\leq i \leq j \leq n}a_j-a_i 1ijnajai
考虑算差为 d d d 的数对个数,最后相乘。用 f i f_i fi 记录 i i i 是否出现,然后用得到的多项式和反转后的多项式相乘,本题就是 { f 1 , f 2 , … , f 1000000 } \{ f_1,f_2,\dots,f_{1000000}\} {f1,f2,,f1000000} { f 1000000 − 1 , f 1000000 − 2 , … , f 1000000 − 1000000 } \{ f_{1000000-1},f_{1000000-2},\dots,f_{1000000-1000000}\} {f10000001,f10000002,,f10000001000000},卷积过后 f u b − i f_{ub-i} fubi 就是差值为 i i i​ 的有序对出现的次数,快速幂一乘即可 q p o w ( i , s u m [ u b − i ] ) qpow(i,sum[ub-i]) qpow(i,sum[ubi])

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const double PI = acos(-1.0);
struct Complex {
    double x, y;
    Complex(double _x = 0.0, double _y = 0.0) {
        x = _x;
        y = _y;
    }
    Complex operator-(const Complex &b) const {
        return Complex(x - b.x, y - b.y);
    }
    Complex operator+(const Complex &b) const {
        return Complex(x + b.x, y + b.y);
    }
    Complex operator*(const Complex &b) const {
        return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
    }
};
/*
 * 进行 FFT 和 IFFT 前的反置变换
 * 位置 i 和 i 的二进制反转后的位置互换
 *len 必须为 2 的幂
 */
void change(Complex y[], int len) {
    int i, j, k;
    for (int i = 1, j = len / 2; i < len - 1; i++) {
        if (i < j) swap(y[i], y[j]);
        // 交换互为小标反转的元素,i<j 保证交换一次
        // i 做正常的 + 1,j 做反转类型的 + 1,始终保持 i 和 j 是反转的
        k = len / 2;
        while (j >= k) {
            j = j - k;
            k = k / 2;
        }
        if (j < k) j += k;
    }
}
/*
 * 做 FFT
 *len 必须是 2^k 形式
 *on == 1 时是 DFT,on == -1 时是 IDFT
 */
void FFT(Complex y[], int len, int on) {
    change(y, len);
    for (int h = 2; h <= len; h <<= 1) {
        Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h));
        for (int j = 0; j < len; j += h) {
            Complex w(1, 0);
            for (int k = j; k < j + h / 2; k++) {
                Complex u = y[k];
                Complex t = w * y[k + h / 2];
                y[k] = u + t;
                y[k + h / 2] = u - t;
                w = w * wn;
            }
        }
    }
    if (on == -1) {
        for (int i = 0; i < len; i++) {
            y[i].x /= len;
        }
    }
}

typedef long long ll;
typedef unsigned long long ull;
const int mod = 998244353;
const int N = 4e6;
Complex x1[N], x2[N];
int a1[N], a2[N];
int sum[N];

ull qp(ull x, ull n) {
    ull res = 1;
    while (n > 0) {
        if (n & 1) {
            res = (res * x) % mod;
        }
        x = (x * x) % mod;
        n >>= 1;
    }
    return res;
}
int main() {
    int n, ub = 1000000;
    ll frac = 1, prod = 1, proda = 1;
    cin >> n;
    for (int i = 0, tmp; i < n; i++) {
        cin >> tmp;
        frac = frac * (i + 1) % mod;
        prod = prod * qp(frac, mod - 2) % mod;
        proda = 1ll * (tmp + 1) * proda % mod;
        a1[tmp]++;
        a2[ub - tmp]++;
    }

    int len = 1;
    ub++;
    while (len < ub * 2 || len < ub * 2) len <<= 1;
    for (int i = 0; i < ub; i++) x1[i] = Complex(a1[i], 0);
    for (int i = ub; i < len; i++) x1[i] = Complex(0, 0);
    for (int i = 0; i < ub; i++) x2[i] = Complex(a2[i], 0);
    for (int i = ub; i < len; i++) x2[i] = Complex(0, 0);

    FFT(x1, len, 1);
    FFT(x2, len, 1);
    for (int i = 0; i < len; i++) x1[i] = x1[i] * x2[i];
    FFT(x1, len, -1);

    for (int i = 0; i < len; i++) sum[i] = int(x1[i].x + 0.5);
    //, cout << i << ": " << sum[i] << endl;

    ll ans = 1;
    ub--;
    for (int i = 1; i <= ub; i++) {
        if (sum[ub - i]) {
            // cout << i << ": " << sum[ub - i] << endl;
            ans = (ans * qp(i, sum[ub - i])) % mod;
        }
    }
    // cout << ans << " " << prod << " " << proda << endl;
    ans = ans * prod % mod * proda % mod;
    cout << ans;
    return 0;
}

J[二分图/带花树]

注意到除了右转,场上只能同时开两个灯。先假设为所有的车都单独亮灯,再考虑如何分配可以节约时间。将可以同时通过的车连边,如果匹配上,则说明两辆车可以同时走,因此一对匹配表示节约1秒。看起来这是一个非常暴力的做法,但是由于总点数不超过 4 ∗ 4 ∗ 100 4*4*100 44100,且是稀疏图,因此不妨大胆尝试匈牙利。

这题的做法和前几天那场二分图类似,但是建模稍微不明显一点点。

#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int N = 1600+5;
int a[5][5];
vector<int> cnt[5][5];
vector<int> mp[N];
int ntot, vis[N], link[N];
void add(int u,int v){
//	cout<<u<<" "<<v<<endl;
    mp[u].push_back(v);
    mp[v].push_back(u);
}
int dfs(int x){
    for(auto v:mp[x]){
        if(vis[v]) continue;
        vis[v] = 1;
        if(link[v] == 0 || dfs(link[v])){
            link[v] = x;
            return 1;
        }
    }
    return 0;
}
int main(){
    ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    int cse;
    cin >> cse;
    while(cse--){
        int ans = 0, res = 0; ntot = 0;
        for(int i = 0; i < 4; i++){
            for(int j = 0; j < 4; j++){
                cin >> a[i][j];
                if((j+1)%4 == i){
                    res = max(res, a[i][j]);
                }else{
                    int tmp = a[i][j];
                    ans += tmp;
                    cnt[i][j].clear();
                    while(tmp--){
                        cnt[i][j].push_back(++ntot);
//                        cout<<i<<" "<<j<<": "<<ntot<<endl;
                    }
                }
            }
        }

        for(auto u:cnt[0][2]) for(auto v:cnt[2][0]) add(u,v);
        for(auto u:cnt[1][3]) for(auto v:cnt[3][1]) add(u,v);
        
        for(auto u:cnt[0][1]) for(auto v:cnt[2][3]) add(u,v);
        for(auto u:cnt[1][2]) for(auto v:cnt[3][0]) add(u,v);
        
        for(int i = 0; i < 4; i++){
            for(auto u:cnt[i][(i+1)%4]) for(auto v:cnt[i][(i+2)%4]) add(u,v);
            for(auto u:cnt[i][(i+2)%4]) for(auto v:cnt[(i+1)%4][(i+2)%4]) add(u,v);
        }

		
		int sum = 0;
        for(int i = 1; i <= ntot; i++){
            memset(vis, 0, sizeof vis);
            int tmp = dfs(i);
            sum += tmp;
        }
        ans = max(ans - sum/2,res);
        cout<<ans<<"\n";

        for(int i = 1; i <= ntot; i++) mp[i].clear(), link[i] = 0;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值