打卡第16天

文章探讨了如何使用后序遍历求二叉树的最大深度,强调了求最小深度时的特殊条件——需考虑最近叶子节点。还提及了N叉树和完全二叉树的节点计数方法,利用完全二叉树特性简化计算。
摘要由CSDN通过智能技术生成

#104. 二叉树的最大深度

自己的思路,这个要使用后序遍历,父节点从子节点收集消息,取子节点的最大深度,然后加1,得到父节点的最大深度

深度:叶子节点到根节点的距离,叶子节点的深度为1;

高度:根节点到叶子节点的距离,根节点的高度为1;

求深度一般用前序遍历,先便利根节点,再子节点,求高度用后续遍历,先遍历子节点,再回到父节点,为什么这道求深度的题用后续遍历的答案比较多,因为根节点的高度就是最大深度。

111. 二叉树的最小深度

这道题掉进卡哥说的坑里了,原本以为把max改成min就可以,但是题目要求是“最小深度是从根节点到最近叶子节点的最短路径上的节点数量”,叶子节点就是左右子树都为空的节点,如果根节点的左子树为null,右子树不为null,此时按照上诉方法答案是1,这是错误的,因为跟题目要求不符,因此要多一步判断,如果出现这样的情况,取右子树最小深度加1。左子树不为null,右子树为null同理。

#559. N 叉树的最大深度

跟第一道一样的思路;

#222. 完全二叉树的节点个数

直接用后续遍历需要遍历所有的节点,可以利用完全二叉树的特性,如果一个节点的左边的深度等于右边的深度,说明这个节点是一颗满二叉树,直接返回2^(深度)-1即可,这样只遍历左右两边即可,不需要遍历所有节点

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值