机器学习笔记10 -- 回归与聚类算法

这篇博客探讨了线性回归在回归问题中的应用,特别是针对欠拟合和过拟合的解决方案——岭回归。同时介绍了逻辑回归在分类问题中的作用。内容还涵盖了模型的保存与加载以及无监督学习中的K-means聚类算法。线性回归的基本原理、损失函数和优化方法也被详细阐述,强调了如何通过最小化误差来提高预测准确性。
摘要由CSDN通过智能技术生成

回归和聚类

线性回归:欠拟合与过拟合 -> 岭回归

分类算法:逻辑回归

模型保存与加载

无监督学习:K - means

线性回归

原理:

        回归问题:目标值为连续型的数据

        应用场景:房价预测,销售额度预测,金融类问题

        定义:

                

                函数关系:目标值 -- 特征值 ——>线性模型

                广义线性模型:非线性关系

                        自变量一次方

                        参数一次方

                线性关系 \neq 线性模型

线性回归的损失和优化原理:

        目标:求模型参数,使得模型能够预测准确

                真实关系:

                随意假定:

                通过一种方法将两个之间的误差不断的减少,更新权重和偏置,当误差越来越小模型也就变的准确

                —— 损失函数/cost/成本函数/目标函数:

                        

         

API:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值