回归和聚类
线性回归:欠拟合与过拟合 -> 岭回归
分类算法:逻辑回归
模型保存与加载
无监督学习:K - means
线性回归
原理:
回归问题:目标值为连续型的数据
应用场景:房价预测,销售额度预测,金融类问题
定义:
函数关系:目标值 -- 特征值 ——>线性模型
广义线性模型:非线性关系
自变量一次方
参数一次方
线性关系 线性模型
线性回归的损失和优化原理:
目标:求模型参数,使得模型能够预测准确
真实关系:
随意假定:
通过一种方法将两个之间的误差不断的减少,更新权重和偏置,当误差越来越小模型也就变的准确
—— 损失函数/cost/成本函数/目标函数:
API: