Euclidean gcd algorithm

gcd是Greatest Common Divisor的缩写,欧几里得最大公约数运算,GCD(A,B)得到A和B最大的公约数,关于该公式的证明可以参数:

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm


这里主要说明该定理在编程中的应用。

情形一:画布一般是内存表面,画完之后一次性blit到framebuffer上显示出来,但是显示分辨率如果可设置,用户改变分辨率,这画布和framebuffer大小可能就不匹配了,这时将画布上一小块区域同步到framebuffer,坐标对焦是个问题,这时就可能会用到gcd:

static U32  start_coord(U32 * p_a_val, U32 a_max, U32 b_max)
{
         U32 b_val = 0;
         U32 gcd = 1;
         U32 a_val = 0;

         if(p_a_val==NULL) return 0;

         if((a_max==0) || (b_max == 0)) 
         {
                   * p_a_val = 0;
                   return 0;
         }
         gcd = get_euclid_gcd(a_max,  b_max);
         if(gcd==0) gcd = 1;

  a_max /=gcd;
         b_max /=gcd;
a_val = * p_a_val;
         b_val =a_val /a_max +1;

         * p_a_val =b_val *a_max;
         b_val = b_val * b_max ;

         return b_val;
}

U32 get_euclid_gcd(U32  max, U32 min)
{
         U32 r,temp;
         if((min == 0) || (max==0))
         {
                   return 1;
         }
         if(max<min)
         {
                   temp=max;
                   max=min;
                   min=temp;
         }
         while(min!=0)
         {
                   r=max%min;
                   max=min;
                   min=r;
         }
         if(max == 0) return 1;
 
         return max;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值