畅通工程续
Time Limit: 1000 MS Memory Limit: 32768 K
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
Sample Output
2
-1
题解
最短路裸题,没有负权边,所以Dij和SPFA都可过。
代码
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
struct edge{int from,to,next,v;}e[1010];
int n,m,dis[250],cnt,head[250],b,d;
bool vis[250],flag=false;
void add(int u,int v,int w)
{
e[cnt++].from=u;
e[cnt].to=v;
e[cnt].v=w;
e[cnt].next=head[u];
head[u]=cnt;
}
void spfa(int s)
{
queue<int>q;
memset(vis,0,sizeof(vis));
memset(dis,63,sizeof(dis));
while(!q.empty()) q.pop();
vis[s]=true;
dis[s]=0;
q.push(s);
while(!q.empty())
{
int temp=q.front();
q.pop();
vis[temp]=false;
if(temp==d) {flag=1;}
for(int i=head[temp];i!=-1;i=e[i].next)
{
int t=e[i].to;
if(dis[t]>dis[temp]+e[i].v)
{
dis[t]=dis[temp]+e[i].v;
if(!vis[t])
{
vis[t]=true;
q.push(t);
}
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
flag=false;
memset(head,-1,sizeof(head));
memset(e,0,sizeof(e));
cnt=0;
for(int i=0;i<m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
add(v,u,w);
}
scanf("%d%d",&b,&d);
spfa(b);
if(flag==false) printf("-1\n");
else printf("%d\n",dis[d]);
}
return 0;
}
OI蒟蒻,欢迎批评指正。