- 博客(4)
- 收藏
- 关注
原创 深入解析 YOLO 算法:实时目标检测的 “快速猎手”
它结合了多种数据增强技术,如马赛克数据增强(Mosaic Augmentation),通过将四张图像随机拼接在一起进行训练,丰富了训练数据的多样性,提升了模型的鲁棒性;同时,YOLOv3 采用了 Darknet-53 网络作为骨干网络,在保证检测精度的同时,维持了较高的检测速度,成为了当时应用广泛的目标检测算法。NMS 算法会比较所有边界框的置信度,保留置信度最高的边界框,抑制与它重叠度较高的其他边界框,从而得到最终准确的检测结果。同时,也可以用于车辆和人员的识别与追踪,实现对特定目标的监控。
2025-04-21 16:20:44
992
原创 一文读懂 CNN、RNN、LSTM 和 Transformer
最后,经过卷积层和池化层处理的数据进入全连接层,全连接层综合这些信息,输出最终的结果。比如 LeNet - 5 这个经典的 CNN 模型,它是专门用来识别手写数字的,通过依次经过输入层、卷积层、池化层、卷积层、池化层、卷积层、全连接层和输出层,成功地实现了对手写数字的识别,为 CNN 的发展打下了坚实基础。在情感分析里,LSTM 先对文本进行预处理,然后把文本转换为词向量序列,接着提取文本中的情感特征,最后通过分类层判断文本的情感倾向是积极、消极还是中立,并且通过不断优化,让情感分析更加准确。
2025-04-18 17:21:23
1013
原创 神经网络基础:从生物启发到工程实现
从生物神经元的灵感启发,到如今在各领域的深度应用,神经网络的发展历程见证了理论创新与工程实践的深度融合。对于学习者而言,理解其数学本质、掌握主流框架的工程实现、关注前沿研究动态,是踏入 AI 领域的必经之路。随着技术的不断演进,神经网络将在更多复杂场景中发挥核心作用,而其背后的 "分层特征学习" 思想,也将持续启发新一代智能系统的设计。
2025-04-17 14:03:56
1741
原创 机器学习从入门到精通:核心知识与学习资源全解析
当与计算机视觉、自然语言处理、语音识别等领域结合时,机器学习衍生出丰富的交叉应用场景,涵盖图像分类、语音识别、推荐系统等多个领域,成为解决复杂实际问题的核心技术。其核心逻辑可概括为 “数据驱动的模型学习”:利用历史数据训练出具备归纳能力的模型,进而对新输入数据产生预测输出,形成 “训练 - 预测” 的闭环。机器学习是理论与实践深度结合的领域,通过系统化的知识框架构建、工具库的熟练运用及真实场景的项目实战,初学者可逐步掌握从数据处理到模型部署的全流程能力,为人工智能领域的深入探索奠定基础。
2025-04-16 16:15:08
570
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人