自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 Datawhale AI夏令营 魔搭MCP&Agent赛事(MCP Server开发)

MCP广场可以说是AI的“App Store”,你开发的MCP Server就是其中一个“App”,可以供所有兼容MCP协议的AI调用。就像互联网上的HTTP协议统一了网页的访问方式一样,MCP旨在成为AI世界的基础通信协议。MCP Server 就是 ”AI互联网“ 上的一个“网站”,给AI提供特定的服务。MCP Server就是为它提供各种“手”和“工具”,让它能够执行实际操作,比如查询数据库、发送邮件、生成图片等。:通过自然语言指令操作复杂系统(如"调整生产线温度"),加速GUI向语言界面的迁移。

2025-07-10 10:22:02 258

原创 Datawhale春训营-2025[星火杯]大模型应用创新赛

Datawhale春训营-2025[星火杯]大模型应用创新赛

2025-05-16 23:36:57 523

原创 Datawhale AI春训营-第三届世界科学智能大赛新能源赛道:新能源发电功率预测

Datawhale AI春训营-第三届世界科学智能大赛新能源赛道:新能源发电功率预测

2025-04-17 12:25:28 242

原创 Datawhale AI夏令营-[星火杯]大模型应用开发学习活动 - 作品提交(求赞哦(⊙o⊙))

Datawhale开源《讯飞2024星火杯》的UI应用产品欢迎大家访问Datawhale教程进行学习相关地址: 比赛地址、学习手册实用:直接面向幼儿教师和广大家长同志,简单便捷。本项目是以讯飞星火大模型为基础的幼儿教育助手。主要包括两大模式:1)问&答&交互模式:直面幼儿教育者的实际工作需求,为幼儿教育者提供技术思路,提高工作效率。2)图&文&音模式:每个人都可以成为教育者,以图&文&音的方式培养幼儿基本的视听说能力。本项目以讯飞星火大模型为模型底座,结合Gradio框架构建对外UI及功能。项目着重于基于大

2024-07-17 16:43:55 545

原创 Datawhale AI夏令营第2期-科大讯飞xDatawhale-电力需求预测挑战赛-Task3

时间序列预测是一个不断发展的领域,随着技术的进步,我们可以期待更多的优化方法和模型的出现。深度学习模型,特别是LSTM和其变体,已经在许多时间序列预测任务中显示出了优越的性能。更复杂的模型结构:如引入注意力机制的LSTM模型,以更好地捕捉时间序列中的长期依赖关系。多模态数据融合:结合时间序列数据和其他类型的数据,如文本或图像,以提供更全面的分析。模型解释性:提高模型的可解释性,以便更好地理解预测结果。自动化特征工程:开发自动化的特征工程工具,以减少手动特征提取的工作量。实时预测。

2024-07-15 15:03:19 913

原创 Datawhale AI夏令营第2期-科大讯飞xDatawhale-电力需求预测挑战赛-Task2

赛题数据由训练集和测试集组成,为了保证比赛的公平性,将每日日期进行脱敏,用1-N进行标识。即1为数据集最近一天,其中1-10为测试集数据。数据集由字段id(房屋id)、 dt(日标识)、type(房屋类型)、target(实际电力消耗)组成。在目前阶段,我们使用lightgbm完成了基本的模型训练,并且添加了时序问题中常见的特征提取方式,通过特征工程挖掘特征可以很快的提升模型预测效果,这也是数据挖掘比赛中的主要优化方向,很多情况下决定着最终的成绩。

2024-07-14 00:22:21 760

原创 Datawhale AI夏令营第2期-科大讯飞xDatawhale-电力需求预测挑战赛-Task1

给定多个房屋对应电力消耗历史N天的相关序列数据等信息,预测房屋对应电力的消耗。适用性:传统模型适合数据量较小、模式简单的问题;机器学习模型适合中等复杂度的问题,可以引入额外变量;深度学习模型适合数据量大、模式复杂的任务。解释性:传统时间序列模型通常具有较好的解释性;机器学习模型的解释性取决于特征工程;深度学习模型的解释性通常较差。计算资源:传统模型计算效率最高;机器学习模型次之;深度学习模型通常需要最多的计算资源。预测能力:深度学习模型在捕捉复杂模式方面具有优势,但需要大量数据支持;

2024-07-11 16:45:38 1006

原创 Datawhale AI夏令营-[星火杯]大模型应用开发学习活动task3 - 星火API & Gradio学习指南

API。

2024-07-03 20:28:41 2655 2

原创 Datawhale AI夏令营-[星火杯]大模型应用开发学习活动task1-task2

完成大模型对话功能的后端开发构建一个有前后端的应用!!!

2024-07-02 19:47:35 1637 2

原创 Datawhale二月组队学习:Hugging Multi Agent笔记Task05

《MetaGPT智能体开发入门》学习笔记。

2024-03-07 14:07:11 1038 1

原创 Datawhale组队学习:华为2022全球校园AI精英大赛:车道渲染数据智能质检赛题总结

华为2022全球校园AI精英大赛,赛题二:车道渲染数据智能质检赛题

2022-09-18 22:16:28 2027 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除