分析问题,连续个数的和为某一个数sum,假设这些连续整数的个数为奇数个n,假设中间数为x,根据等差数列的性质,那个这n个数的和为x *n,也就是说中间数一定能够被sum整除,那么我么只要求得中间数,其他的数也可以知道,这是第一种情况。
另外一种情况,这些连续整数的个数为偶数,根据等差数列特性和奇偶特性,最中间的两个数的和一定为奇数,同样首位相加,和也一定为中间两数相加的和,那么sum一定可以被中间两数相加的和整除,既然分析完了,编程实现。
public class Test3 {
/**
* @param args
*/
public static void main(String[] args) {
Test3 test1=new Test3();
Scanner scanner=new Scanner(System.in);
long number=scanner.nextLong();
test1.orderSum(number);
}
/**
* @param 因为连续的数为奇数偶数顺序排列,根据等差数列的特性,如果一组数据有奇数个必定能够被中间数整除,
* 如果这个数组有偶数个,则能够被中间两个数的和整除
* 因为一定是能够被某个数整除,所以一定要求的这个数除本身外的最大约数
*/
private void orderSum(long n) {
if (n > 1) {
long count=1;
long sqrt = (long) Math.sqrt(n);
long m