- 生成树:一个连通图的生成树是一个极小连通子图,它包含图中所有顶点(假设有n个),只有n-1条边
- 生成树不唯一
- 生成树的代价:等于该树各边权值之和
- 最小生成树就是最小代价生成树
- 构造最小生成树的方法:①kruskal ②Prim
Kruskal算法
- 初始时,T=(V,{∅}),即各点自为连通分量
- 选择一条u,v属于不同连通分量且(u,v)最小的边
- 将(u,v)加入T
- 重复2,3,直到所有顶点属于同一连通分量
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=101;//最多有maxn个点
const int maxm=10001;//最多有maxm条边
int pre[maxn];
struct node{
int x;
int y;
int cost;//边(x,y)的权值为cost
}road[maxm];
int cmp(node a,node b)
{
return a.cost<b.cost;
}
//利用并查集判断是否属于同一连通分量
int find(int x)
{
if(x!=pre[x])
pre[x]=find(pre[x]);
return pre[x];
}
int union1(int x,int y)
{
int fx=find(x),fy=find(y);
if(fx!=fy)
{
pre[fx]=fy;
return 1;
}
return 0;
}
int main()
{
int n,m,flag,sum;
scanf("%d%d",&n,&m);//n个点,m条边
for(int i=0;i<=n;i++)
pre[i]=i;
for(int i=1;i<=m;i++)
scanf("%d%d%d",&road[i].x,&road[i].y,&road[i].cost);
sort(road+1,road+1+m,cmp);
sum=0;
for(int i=1;i<=m;i++)
{
if(union1(road[i].x,road[i].y))
{
sum+=road[i].cost;
}
}
for(int i=1;i<=n;i++)
if(pre[i]==i)
flag++;
if(flag>1)
printf("不存在最小生成树\n");
else
printf("%d\n",sum );
return 0;
}