最小生成树

  • 生成树:一个连通图的生成树是一个极小连通子图,它包含图中所有顶点(假设有n个),只有n-1条边
  • 生成树不唯一
  • 生成树的代价:等于该树各边权值之和
  • 最小生成树就是最小代价生成树
  • 构造最小生成树的方法:①kruskal  ②Prim

 

Kruskal算法

  1. 初始时,T=(V,{∅}),即各点自为连通分量
  2. 选择一条u,v属于不同连通分量且(u,v)最小的边
  3. 将(u,v)加入T
  4. 重复2,3,直到所有顶点属于同一连通分量
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=101;//最多有maxn个点 
const int maxm=10001;//最多有maxm条边 
int pre[maxn];
struct node{
	int x;
	int y;
	int cost;//边(x,y)的权值为cost 
}road[maxm];
int cmp(node a,node b)
{
	return a.cost<b.cost; 
}
//利用并查集判断是否属于同一连通分量 
int find(int x)
{
	if(x!=pre[x])
		pre[x]=find(pre[x]);
	return pre[x];
}
int union1(int x,int y)
{
	int fx=find(x),fy=find(y);
	if(fx!=fy)
	{
		pre[fx]=fy;
		return 1;
	}
	return 0;
}
int main()
{
	int n,m,flag,sum;
	scanf("%d%d",&n,&m);//n个点,m条边
	for(int i=0;i<=n;i++)
		pre[i]=i;
	for(int i=1;i<=m;i++)
		scanf("%d%d%d",&road[i].x,&road[i].y,&road[i].cost);
	sort(road+1,road+1+m,cmp);
	sum=0;
	for(int i=1;i<=m;i++)
	{
		if(union1(road[i].x,road[i].y))
		{
			sum+=road[i].cost;
		}
	}
	for(int i=1;i<=n;i++)
		if(pre[i]==i)
			flag++;
	if(flag>1)
		printf("不存在最小生成树\n");
	else
		printf("%d\n",sum ); 
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值