Mayor's posters POJ - 2528 线段树+离散化

该博客讨论了Bytetown市长选举中关于海报放置的规定,候选人必须在10000000字节长的墙上放置一张海报,完全覆盖连续的墙段。输入包含多个测试用例,每个用例包含海报的起止位置。问题在于计算最终可见的海报数量。解决方案是通过离散化和区间更新来统计不同颜色(代表不同海报)的数量。
摘要由CSDN通过智能技术生成

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules: 

  • Every candidate can place exactly one poster on the wall. 
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown). 
  • The wall is divided into segments and the width of each segment is one byte. 
  • Each poster must completely cover a contiguous number of wall segments.


They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed. 

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

题意:给你一个n,表示有n张海报,所有海报高度相等,给你每个海报要贴的位置,问你最后能看见几张海报。

思路:l,r都很大,但是n最多只有10000,因此我们可以进行离散化处理,简单的区间更新,第i个海报把所占区间染为i色,最后统计有几种颜色就能看见几张海报。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=2e5+100;
struct Node{
	int l;
	int r;
}a[maxn*4];
struct node{
	int l;
	int r;
	int laz;
	int sum;
}tree[maxn*4];
int book[maxn*4],b[maxn*4],res;
void build(int l,int r,int cur)
{
	tree[cur].l=l;
	tree[cur].r=r;
	tree[cur].laz=-1;
	tree[cur].sum=0;
	if(l==r) return ;
	int m=(l+r)>>1;
	build(l,m,cur<<1);
	build(m+1,r,cur<<1|1);
}
void pushdown(int cur)
{
	if(tree[cur].laz!=-1)
	{
		tree[cur<<1].sum=tree[cur].laz;
		tree[cur<<1].laz=tree[cur].laz;
		tree[cur<<1|1].sum=tree[cur].laz;
		tree[cur<<1|1].laz=tree[cur].laz;
		tree[cur].laz=-1;
	}
}
void update(int L,int R,int val,int cur)
{
	if(L<=tree[cur].l&&tree[cur].r<=R)
	{
		tree[cur].laz=val;
		tree[cur].sum=val;
		return ;
	}
	pushdown(cur);
	int m=(tree[cur].l+tree[cur].r)>>1;
	if(L<=m) update(L,R,val,cur<<1);
	if(R>m) update(L,R,val,cur<<1|1);
}
void query(int cur)
{
	if(!book[tree[cur].sum]&&tree[cur].l==tree[cur].r)
	{
		book[tree[cur].sum]=1;
		res++;
		return ;
	}
	if(tree[cur].l==tree[cur].r) return ;
	pushdown(cur);
	query(cur<<1);
	query(cur<<1|1);
	return ;
}
int main()
{
	int n,t,cnt;
	scanf("%d",&t);
	while(t--)
	{
		res=0;cnt=0;
		memset(book,0,sizeof(book));
		scanf("%d",&n);
		for(int i=1;i<=n;i++)
		{
			scanf("%d%d",&a[i].l,&a[i].r);
			b[++cnt]=a[i].l;
			b[++cnt]=a[i].r;
		}
		sort(b+1,b+1+cnt);
		cnt=unique(b+1,b+1+cnt)-(b+1);
		build(1,cnt,1);
		for(int i=1;i<=n;i++)
		{
			int x=lower_bound(b+1,b+1+cnt,a[i].l)-b;
			int y=lower_bound(b+1,b+1+cnt,a[i].r)-b;
			update(x,y,i,1);
		}
		query(1);
		printf("%d\n",res);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值